Arcyriaflavin A, a cyclin D1/CDK4 inhibitor, suppresses tumor growth, migration, and invasion of metastatic melanoma cells.

IF 5.3 2区 医学 Q1 ONCOLOGY Cancer Cell International Pub Date : 2025-02-13 DOI:10.1186/s12935-025-03675-4
Dokyeong Kim, Junseong Park, Yoon-Seob Kim, Okcho Na, Minyoung Park, Songzi Zhang, Sumin Cho, Yeun-Jun Chung
{"title":"Arcyriaflavin A, a cyclin D1/CDK4 inhibitor, suppresses tumor growth, migration, and invasion of metastatic melanoma cells.","authors":"Dokyeong Kim, Junseong Park, Yoon-Seob Kim, Okcho Na, Minyoung Park, Songzi Zhang, Sumin Cho, Yeun-Jun Chung","doi":"10.1186/s12935-025-03675-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Despite advancements in targeted therapy and immunotherapy, cutaneous melanoma continues to have a high mortality rate and poor prognosis, with therapies having limited efficacy in advanced melanoma. Therefore, it is crucial to develop novel therapeutics with proven clinical potential. In this study, we evaluated the efficacy of arcyriaflavin A (ArcA), a potent inhibitor of the cyclin D1/CDK4 complex, in suppressing aggressive phenotypes of metastatic melanoma.</p><p><strong>Methods: </strong>The effects of ArcA on viability and cell cycle were evaluated across four melanoma cell lines: WM239A and its metastatic derivatives: 113-6/4L, 131/4-5B1, and 131/4-5B2. Additionally, we performed wound healing and transwell invasion assays, followed by western blot. We further established xenograft mouse models by subcutaneously injecting them with the four melanoma cell lines and measured tumor size and weight biweekly. Immunohistochemistry analysis was performed to compare protein expression.</p><p><strong>Results: </strong>ArcA demonstrated dose-dependent cytotoxicity, selectively targeting melanoma cells without affecting normal cells, and induced G<sub>1</sub> cell cycle arrest. Moreover, ArcA significantly inhibited cell migration and invasion in metastatic melanoma cell lines, accompanied by reduced expression levels of p-GSK-3β (Ser9), MMP-9, and MMP-13, suggesting that its anti-metastatic effects may be partially mediated through GSK-3β, MMP-9, and MMP-13. These findings were further validated using mouse xenograft models; ArcA-treated mice exhibited significantly smaller tumor volumes and lighter tumor weights compared to vehicle-treated mice. Immunohistochemistry further confirmed decreased expression of p-GSK-3β, MMP-9, and MMP-13 in tumor tissues from ArcA-treated mice.</p><p><strong>Conclusions: </strong>Collectively, our findings indicate that ArcA possesses substantial anti-tumor potential, including cytotoxic effects and inhibition of migration and invasion in metastatic melanoma. These results suggest that ArcA could enhance therapeutic efficacy in the treatment of metastatic melanoma.</p>","PeriodicalId":9385,"journal":{"name":"Cancer Cell International","volume":"25 1","pages":"42"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11827473/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12935-025-03675-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Despite advancements in targeted therapy and immunotherapy, cutaneous melanoma continues to have a high mortality rate and poor prognosis, with therapies having limited efficacy in advanced melanoma. Therefore, it is crucial to develop novel therapeutics with proven clinical potential. In this study, we evaluated the efficacy of arcyriaflavin A (ArcA), a potent inhibitor of the cyclin D1/CDK4 complex, in suppressing aggressive phenotypes of metastatic melanoma.

Methods: The effects of ArcA on viability and cell cycle were evaluated across four melanoma cell lines: WM239A and its metastatic derivatives: 113-6/4L, 131/4-5B1, and 131/4-5B2. Additionally, we performed wound healing and transwell invasion assays, followed by western blot. We further established xenograft mouse models by subcutaneously injecting them with the four melanoma cell lines and measured tumor size and weight biweekly. Immunohistochemistry analysis was performed to compare protein expression.

Results: ArcA demonstrated dose-dependent cytotoxicity, selectively targeting melanoma cells without affecting normal cells, and induced G1 cell cycle arrest. Moreover, ArcA significantly inhibited cell migration and invasion in metastatic melanoma cell lines, accompanied by reduced expression levels of p-GSK-3β (Ser9), MMP-9, and MMP-13, suggesting that its anti-metastatic effects may be partially mediated through GSK-3β, MMP-9, and MMP-13. These findings were further validated using mouse xenograft models; ArcA-treated mice exhibited significantly smaller tumor volumes and lighter tumor weights compared to vehicle-treated mice. Immunohistochemistry further confirmed decreased expression of p-GSK-3β, MMP-9, and MMP-13 in tumor tissues from ArcA-treated mice.

Conclusions: Collectively, our findings indicate that ArcA possesses substantial anti-tumor potential, including cytotoxic effects and inhibition of migration and invasion in metastatic melanoma. These results suggest that ArcA could enhance therapeutic efficacy in the treatment of metastatic melanoma.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.90
自引率
1.70%
发文量
360
审稿时长
1 months
期刊介绍: Cancer Cell International publishes articles on all aspects of cancer cell biology, originating largely from, but not limited to, work using cell culture techniques. The journal focuses on novel cancer studies reporting data from biological experiments performed on cells grown in vitro, in two- or three-dimensional systems, and/or in vivo (animal experiments). These types of experiments have provided crucial data in many fields, from cell proliferation and transformation, to epithelial-mesenchymal interaction, to apoptosis, and host immune response to tumors. Cancer Cell International also considers articles that focus on novel technologies or novel pathways in molecular analysis and on epidemiological studies that may affect patient care, as well as articles reporting translational cancer research studies where in vitro discoveries are bridged to the clinic. As such, the journal is interested in laboratory and animal studies reporting on novel biomarkers of tumor progression and response to therapy and on their applicability to human cancers.
期刊最新文献
Comprehensive network pharmacology and experimental study to investigate the effect and mechanism of solasonine on breast carcinoma treatment. Mcl-1 downregulation enhances BCG treatment efficacy in bladder cancer by promoting macrophage polarization. Mechanistic insights of lenvatinib: enhancing cisplatin sensitivity, inducing apoptosis, and suppressing metastasis in bladder cancer cells through EGFR/ERK/P38/NF-κB signaling inactivation. The role of mitochondrial biogenesis, mitochondrial dynamics and mitophagy in gastrointestinal tumors. Overexpressed NEK2 contributes to progression and cisplatin resistance through activating the Wnt/β-catenin signaling pathway in cervical cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1