Mechanistic insights of lenvatinib: enhancing cisplatin sensitivity, inducing apoptosis, and suppressing metastasis in bladder cancer cells through EGFR/ERK/P38/NF-κB signaling inactivation.

IF 5.3 2区 医学 Q1 ONCOLOGY Cancer Cell International Pub Date : 2025-02-15 DOI:10.1186/s12935-024-03597-7
Chih-Hung Chiang, Jr-Di Yang, Wei-Lin Liu, Fang-Yu Chang, Che-Jui Yang, Kai-Wen Hsu, I-Tsang Chiang, Fei-Ting Hsu
{"title":"Mechanistic insights of lenvatinib: enhancing cisplatin sensitivity, inducing apoptosis, and suppressing metastasis in bladder cancer cells through EGFR/ERK/P38/NF-κB signaling inactivation.","authors":"Chih-Hung Chiang, Jr-Di Yang, Wei-Lin Liu, Fang-Yu Chang, Che-Jui Yang, Kai-Wen Hsu, I-Tsang Chiang, Fei-Ting Hsu","doi":"10.1186/s12935-024-03597-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The persistent activation of the epidermal growth factor receptor (EGFR) leads to the activation of downstream oncogenic kinases and transcription factors, resulting in tumor progression and an increased resistance to cisplatin in bladder cancer (BC) cells. Lenvatinib, an oral multikinase inhibitor, has the potential to offer therapeutic benefits as an adjuvant treatment for BC patients. The investigation into its application in bladder cancer treatment is a valuable endeavor. The primary goal of this study is to confirm the effectiveness and mechanism of lenvatinib in inhibiting the progression of BC and enhancing the anticancer efficacy of cisplatin.</p><p><strong>Materials: </strong>Three BC cell lines, namely, TSGH-8301, T24, and MB49, along with an MB49-bearing animal model, were utilized in this study.</p><p><strong>Results: </strong>In vitro experiments utilizing MTT assays demonstrated that lenvatinib sensitized BC cells to cisplatin, exhibiting a synergistic effect. Flow cytometry indicated apoptotic events and signaling, presenting that lenvatinib effectively induced apoptosis and triggered extrinsic/intrinsic apoptotic pathways. In vivo studies using a mouse model of BC confirmed the antitumor efficacy of lenvatinib, demonstrating significant tumor growth suppression without inducing toxicity in normal tissues. Western blotting analysis and immunohistochemistry stain revealed EGF-phosphorylated EGFR and EGFR-mediated ERK/P38/NF-κB signaling were suppressed by treatment with lenvatinib. In addition, lenvatinib also suppressed anti-apoptotic (MCL1, c-FLIP, and XIAP) and metastasis-related factors (Twist, Snail-1, ZEB-1, ZEB-2, and MMP9) and promoted epithelial markers (E-cadherin) while reducing mesenchymal markers (N-cadherin).</p><p><strong>Conclusion: </strong>In conclusion, the induction of apoptosis and the inhibition of EGFR/ERK/P38/NF-κB signaling are correlated with lenvatinib's ability to hinder tumor progression and enhance the cytotoxic effects of cisplatin in bladder cancer. These findings underscore the potential of lenvatinib as a therapeutic option for bladder cancer, either as a standalone treatment or in combination with cisplatin.</p>","PeriodicalId":9385,"journal":{"name":"Cancer Cell International","volume":"25 1","pages":"47"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12935-024-03597-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The persistent activation of the epidermal growth factor receptor (EGFR) leads to the activation of downstream oncogenic kinases and transcription factors, resulting in tumor progression and an increased resistance to cisplatin in bladder cancer (BC) cells. Lenvatinib, an oral multikinase inhibitor, has the potential to offer therapeutic benefits as an adjuvant treatment for BC patients. The investigation into its application in bladder cancer treatment is a valuable endeavor. The primary goal of this study is to confirm the effectiveness and mechanism of lenvatinib in inhibiting the progression of BC and enhancing the anticancer efficacy of cisplatin.

Materials: Three BC cell lines, namely, TSGH-8301, T24, and MB49, along with an MB49-bearing animal model, were utilized in this study.

Results: In vitro experiments utilizing MTT assays demonstrated that lenvatinib sensitized BC cells to cisplatin, exhibiting a synergistic effect. Flow cytometry indicated apoptotic events and signaling, presenting that lenvatinib effectively induced apoptosis and triggered extrinsic/intrinsic apoptotic pathways. In vivo studies using a mouse model of BC confirmed the antitumor efficacy of lenvatinib, demonstrating significant tumor growth suppression without inducing toxicity in normal tissues. Western blotting analysis and immunohistochemistry stain revealed EGF-phosphorylated EGFR and EGFR-mediated ERK/P38/NF-κB signaling were suppressed by treatment with lenvatinib. In addition, lenvatinib also suppressed anti-apoptotic (MCL1, c-FLIP, and XIAP) and metastasis-related factors (Twist, Snail-1, ZEB-1, ZEB-2, and MMP9) and promoted epithelial markers (E-cadherin) while reducing mesenchymal markers (N-cadherin).

Conclusion: In conclusion, the induction of apoptosis and the inhibition of EGFR/ERK/P38/NF-κB signaling are correlated with lenvatinib's ability to hinder tumor progression and enhance the cytotoxic effects of cisplatin in bladder cancer. These findings underscore the potential of lenvatinib as a therapeutic option for bladder cancer, either as a standalone treatment or in combination with cisplatin.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.90
自引率
1.70%
发文量
360
审稿时长
1 months
期刊介绍: Cancer Cell International publishes articles on all aspects of cancer cell biology, originating largely from, but not limited to, work using cell culture techniques. The journal focuses on novel cancer studies reporting data from biological experiments performed on cells grown in vitro, in two- or three-dimensional systems, and/or in vivo (animal experiments). These types of experiments have provided crucial data in many fields, from cell proliferation and transformation, to epithelial-mesenchymal interaction, to apoptosis, and host immune response to tumors. Cancer Cell International also considers articles that focus on novel technologies or novel pathways in molecular analysis and on epidemiological studies that may affect patient care, as well as articles reporting translational cancer research studies where in vitro discoveries are bridged to the clinic. As such, the journal is interested in laboratory and animal studies reporting on novel biomarkers of tumor progression and response to therapy and on their applicability to human cancers.
期刊最新文献
Mcl-1 downregulation enhances BCG treatment efficacy in bladder cancer by promoting macrophage polarization. Mechanistic insights of lenvatinib: enhancing cisplatin sensitivity, inducing apoptosis, and suppressing metastasis in bladder cancer cells through EGFR/ERK/P38/NF-κB signaling inactivation. The role of mitochondrial biogenesis, mitochondrial dynamics and mitophagy in gastrointestinal tumors. Overexpressed NEK2 contributes to progression and cisplatin resistance through activating the Wnt/β-catenin signaling pathway in cervical cancer. Arcyriaflavin A, a cyclin D1/CDK4 inhibitor, suppresses tumor growth, migration, and invasion of metastatic melanoma cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1