Inferring tumor purity using multi-omics data based on a uniform machine learning framework MoTP.

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Briefings in bioinformatics Pub Date : 2024-11-22 DOI:10.1093/bib/bbaf056
Qiqi Lu, Zhixian Liu, Xiaosheng Wang
{"title":"Inferring tumor purity using multi-omics data based on a uniform machine learning framework MoTP.","authors":"Qiqi Lu, Zhixian Liu, Xiaosheng Wang","doi":"10.1093/bib/bbaf056","DOIUrl":null,"url":null,"abstract":"<p><p>Existing algorithms for assessing tumor purity are limited to a single omics data, such as gene expression, somatic copy number variations, somatic mutations, and DNA methylation. Here we proposed the machine learning Multi-omics Tumor Purity prediction (MoTP) algorithm to estimate tumor purity based on multiple types of omics data. MoTP utilizes the Bayesian Regularized Neural Networks as the prediction algorithm, and Consensus Tumor Purity Estimates as labels. We trained MoTP using multi-omics data (mRNA, microRNA, long non-coding RNA, and DNA methylation) across 21 TCGA solid cancer types. By testing MoTP in TCGA validation sets, TCGA test sets, and eight datasets outside the TCGA cancer cohorts, we showed that although MoTP could achieve excellent performance in predicting tumor purity based on a single omics data type, the integration of multiple single omics data-based predictions can enhance the prediction performance. Moreover, we demonstrated the robustness of MoTP by testing it in datasets with Gaussian noise and feature missing. Benchmark analysis showed that MoTP outperformed most established tumor purity prediction algorithms, and that it required less running time and computational resource to fulfill the predictive task. Thus, MoTP would be an attractive option for computational tumor purity inference.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11826339/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf056","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Existing algorithms for assessing tumor purity are limited to a single omics data, such as gene expression, somatic copy number variations, somatic mutations, and DNA methylation. Here we proposed the machine learning Multi-omics Tumor Purity prediction (MoTP) algorithm to estimate tumor purity based on multiple types of omics data. MoTP utilizes the Bayesian Regularized Neural Networks as the prediction algorithm, and Consensus Tumor Purity Estimates as labels. We trained MoTP using multi-omics data (mRNA, microRNA, long non-coding RNA, and DNA methylation) across 21 TCGA solid cancer types. By testing MoTP in TCGA validation sets, TCGA test sets, and eight datasets outside the TCGA cancer cohorts, we showed that although MoTP could achieve excellent performance in predicting tumor purity based on a single omics data type, the integration of multiple single omics data-based predictions can enhance the prediction performance. Moreover, we demonstrated the robustness of MoTP by testing it in datasets with Gaussian noise and feature missing. Benchmark analysis showed that MoTP outperformed most established tumor purity prediction algorithms, and that it required less running time and computational resource to fulfill the predictive task. Thus, MoTP would be an attractive option for computational tumor purity inference.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
现有的肿瘤纯度评估算法仅限于单一的组学数据,如基因表达、体细胞拷贝数变异、体细胞突变和DNA甲基化。在这里,我们提出了机器学习多组学肿瘤纯度预测(MoTP)算法,以基于多种组学数据来估计肿瘤纯度。MoTP采用贝叶斯正则化神经网络作为预测算法,以共识肿瘤纯度估计值作为标签。我们使用 21 种 TCGA 实体癌类型的多组学数据(mRNA、microRNA、长非编码 RNA 和 DNA 甲基化)对 MoTP 进行了训练。通过在TCGA验证集、TCGA测试集和TCGA癌症队列之外的8个数据集中测试MoTP,我们发现尽管MoTP在基于单个组学数据类型预测肿瘤纯度方面可以取得优异的性能,但整合多个基于单个组学数据的预测可以提高预测性能。此外,我们还在具有高斯噪声和特征缺失的数据集上测试了MoTP的鲁棒性。基准分析表明,MoTP的性能优于大多数成熟的肿瘤纯度预测算法,而且它完成预测任务所需的运行时间和计算资源更少。因此,MoTP将是计算肿瘤纯度推断的一个有吸引力的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
期刊最新文献
TRIAGE: an R package for regulatory gene analysis. AutoXAI4Omics: an automated explainable AI tool for omics and tabular data. MCGAE: unraveling tumor invasion through integrated multimodal spatial transcriptomics. tcrBLOSUM: an amino acid substitution matrix for sensitive alignment of distant epitope-specific TCRs. A versatile pipeline to identify convergently lost ancestral conserved fragments associated with convergent evolution of vocal learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1