Exploring Neighborhood Topological Descriptors for Quantitative Structure-property Relationship (QSPR) Analysis and Entropy Measures of Some Anti-cancer Drugs.

IF 1.7 4区 化学 Q3 CHEMISTRY, ORGANIC Current organic synthesis Pub Date : 2025-02-10 DOI:10.2174/0115701794349166241217085334
Tony Augustine, Roy Santiago, Sahaya Vijay Jeyaraj, Mohamad Azeem
{"title":"Exploring Neighborhood Topological Descriptors for Quantitative Structure-property Relationship (QSPR) Analysis and Entropy Measures of Some Anti-cancer Drugs.","authors":"Tony Augustine, Roy Santiago, Sahaya Vijay Jeyaraj, Mohamad Azeem","doi":"10.2174/0115701794349166241217085334","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study investigated many cancer medicines using a wide range of degree sum-based topological indices and entropy. These numerical numbers, commonly referred to as topological indices or molecular descriptors, depict a substance's molecular structure. They have been successfully used to properly reflect different physicochemical properties in a number of Quantitative Structure-Property Relationship (QSPR) and Quanti-tative Structure-Activity Relationship (QSAR) research studies.</p><p><strong>Objective: </strong>The purpose of the study was to investigate the relationships between topological neighborhood indices and physicochemical properties using the QSPR model and linear re-gression methodology.</p><p><strong>Methods: </strong>We employed linear regression methodology within the QSPR model to examine the connections between physicochemical characteristics and topological neighborhood in-dices.</p><p><strong>Results: </strong>The results revealed a significant correlation between the neighborhood indices un-der scrutiny and the physicochemical features of the potential drugs under investigation.</p><p><strong>Conclusion: </strong>As a result, both neighborhood topological indices and entropy demonstrate potential as valuable tools for future QSPR investigations when evaluating anticancer medi-cations.</p>","PeriodicalId":11101,"journal":{"name":"Current organic synthesis","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current organic synthesis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0115701794349166241217085334","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

Background: This study investigated many cancer medicines using a wide range of degree sum-based topological indices and entropy. These numerical numbers, commonly referred to as topological indices or molecular descriptors, depict a substance's molecular structure. They have been successfully used to properly reflect different physicochemical properties in a number of Quantitative Structure-Property Relationship (QSPR) and Quanti-tative Structure-Activity Relationship (QSAR) research studies.

Objective: The purpose of the study was to investigate the relationships between topological neighborhood indices and physicochemical properties using the QSPR model and linear re-gression methodology.

Methods: We employed linear regression methodology within the QSPR model to examine the connections between physicochemical characteristics and topological neighborhood in-dices.

Results: The results revealed a significant correlation between the neighborhood indices un-der scrutiny and the physicochemical features of the potential drugs under investigation.

Conclusion: As a result, both neighborhood topological indices and entropy demonstrate potential as valuable tools for future QSPR investigations when evaluating anticancer medi-cations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Current organic synthesis
Current organic synthesis 化学-有机化学
CiteScore
3.40
自引率
5.60%
发文量
86
审稿时长
6-12 weeks
期刊介绍: Current Organic Synthesis publishes in-depth reviews, original research articles and letter/short communications on all areas of synthetic organic chemistry i.e. asymmetric synthesis, organometallic chemistry, novel synthetic approaches to complex organic molecules, carbohydrates, polymers, protein chemistry, DNA chemistry, supramolecular chemistry, molecular recognition and new synthetic methods in organic chemistry. The frontier reviews provide the current state of knowledge in these fields and are written by experts who are internationally known for their eminent research contributions. The journal is essential reading to all synthetic organic chemists. Current Organic Synthesis should prove to be of great interest to synthetic chemists in academia and industry who wish to keep abreast with recent developments in key fields of organic synthesis.
期刊最新文献
Base Mediated 7-exo-dig Intramolecular Cyclization of Betti-propargyl Precursors: An Efficient Approach to 1,4-oxazepine Derivatives. Exploring Neighborhood Topological Descriptors for Quantitative Structure-property Relationship (QSPR) Analysis and Entropy Measures of Some Anti-cancer Drugs. A Convenient one-pot Approach to the Synthesis of Novel Benzimidazole-Indole Molecular Hybrids as Benzazacamalexin Related Analogues. Design, Synthesis, and Biological Evaluation of Some Novel o-aminophenol Derivatives. The Conjugation of Chlorambucil with 4-Phenylbutanoic Acid and Valproic Acid respectively for Enhancing Anti-tumor Activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1