Genetic and anatomical determinants of olfaction in dogs and wild canids.

IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular biology and evolution Pub Date : 2025-02-14 DOI:10.1093/molbev/msaf035
Alice Mouton, Deborah Bird, Gang Li, Brent A Craven, Jonathan M Levine, Marco Morselli, Matteo Pellegrini, Blaire Van Valkenburgh, Robert K Wayne, William J Murphy
{"title":"Genetic and anatomical determinants of olfaction in dogs and wild canids.","authors":"Alice Mouton, Deborah Bird, Gang Li, Brent A Craven, Jonathan M Levine, Marco Morselli, Matteo Pellegrini, Blaire Van Valkenburgh, Robert K Wayne, William J Murphy","doi":"10.1093/molbev/msaf035","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the anatomical and genetic basis of complex phenotypic traits has long been a challenge for biological research. Domestic dogs offer a compelling model as they demonstrate more phenotypic variation than any other vertebrate species. Dogs have been intensely selected for specific traits and abilities, directly or indirectly, over the past 15,000 years since their initial domestication from the gray wolf. Because olfaction plays a central role in critical tasks, such as the detection of drugs, diseases, and explosives, as well as human rescue, we compared relative olfactory capacity across dog breeds and assessed changes to the canine olfactory system to their direct ancestors, wolves and coyotes. We conducted a cross-disciplinary survey of olfactory anatomy, olfactory receptor (OR) gene variation, and OR gene expression in domestic dogs. Through comparisons to their closest wild canid relatives, the gray wolf and coyote, we show that domestic dogs might have lost functional OR genes commensurate with a documented reduction in nasal morphology as an outcome of the domestication process prior to breed formation. Critically, within domestic dogs alone, we found no genetic or morphological profile shared among functional or genealogical breed groupings, such as scent hounds, that might indicate evidence of any human-directed selection for enhanced olfaction. Instead, our results suggest that superior scent detection dogs likely owe their success to advantageous behavioral traits and training rather than an \"olfactory edge\" provided by morphology or genes.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biology and evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/molbev/msaf035","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the anatomical and genetic basis of complex phenotypic traits has long been a challenge for biological research. Domestic dogs offer a compelling model as they demonstrate more phenotypic variation than any other vertebrate species. Dogs have been intensely selected for specific traits and abilities, directly or indirectly, over the past 15,000 years since their initial domestication from the gray wolf. Because olfaction plays a central role in critical tasks, such as the detection of drugs, diseases, and explosives, as well as human rescue, we compared relative olfactory capacity across dog breeds and assessed changes to the canine olfactory system to their direct ancestors, wolves and coyotes. We conducted a cross-disciplinary survey of olfactory anatomy, olfactory receptor (OR) gene variation, and OR gene expression in domestic dogs. Through comparisons to their closest wild canid relatives, the gray wolf and coyote, we show that domestic dogs might have lost functional OR genes commensurate with a documented reduction in nasal morphology as an outcome of the domestication process prior to breed formation. Critically, within domestic dogs alone, we found no genetic or morphological profile shared among functional or genealogical breed groupings, such as scent hounds, that might indicate evidence of any human-directed selection for enhanced olfaction. Instead, our results suggest that superior scent detection dogs likely owe their success to advantageous behavioral traits and training rather than an "olfactory edge" provided by morphology or genes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular biology and evolution
Molecular biology and evolution 生物-进化生物学
CiteScore
19.70
自引率
3.70%
发文量
257
审稿时长
1 months
期刊介绍: Molecular Biology and Evolution Journal Overview: Publishes research at the interface of molecular (including genomics) and evolutionary biology Considers manuscripts containing patterns, processes, and predictions at all levels of organization: population, taxonomic, functional, and phenotypic Interested in fundamental discoveries, new and improved methods, resources, technologies, and theories advancing evolutionary research Publishes balanced reviews of recent developments in genome evolution and forward-looking perspectives suggesting future directions in molecular evolution applications.
期刊最新文献
Avian Migration-Mediated Transmission and Recombination driving the Diversity of Gammacoronaviruses and Deltacoronaviruses. Genetic and anatomical determinants of olfaction in dogs and wild canids. Lineage-Specific Class-A GPCR Dynamics Reflect Diverse Chemosensory Adaptations in Lophotrochozoa. Widespread and convergent evolution of cone monochromacy in galeomorph sharks. A tale of too many trees: a conundrum for phylogenetic regression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1