{"title":"Attenuated neurotoxicity after repeated methamphetamine binges linked to dopamine transporter (DAT) decline","authors":"Noelia Granado , Liliana Mendieta , Yousef Tizabi , Mario Gustavo Murer , Rosario Moratalla","doi":"10.1016/j.nbd.2025.106839","DOIUrl":null,"url":null,"abstract":"<div><div>Methamphetamine (METH) abuse increases worldwide. In addition to its acute life-threatening effects, METH is toxic for dopaminergic neurons, increasing the risk of developing Parkinson's disease. The impact of repeated METH binge consumption on dopaminergic and neurotoxicity markers remains unclear. We exposed mice to a repeated “binge-like” METH regime, consisting of three doses over a 6 h interval, repeated three times with 14-day intervals. After the first binge, spontaneous motor activity decreased markedly but remained normal after subsequent binges. Following the first binge, we observed a 25 % loss of nigral dopaminergic cell bodies and significant axon terminal damage as assessed through striatal silver staining, with minimal further degeneration after additional binges. Dopaminergic markers were substantially depleted after the first and second binges, despite partial recovery between binges, dropping to below 20 % of control levels. By one day after the third binge, tyrosine hydroxylase (TH) and vesicular monoamine transporter 2 (VMAT2) stabilized at 50–60 % of control levels, but the dopamine transporter (DAT) remained at only 25 %, showing less recovery. These changes were accompanied by an evolving neuroinflammation pattern, with a transient microglial surge after the first binge and persistent astroglial and temperature responses. Overall, our findings indicate partial recovery of dopaminergic markers and the development of tolerance to METH neurotoxicity. The robust reduction of DAT after the first binge may contribute to this tolerance to subsequence binges by limiting METH entry into neurons thereby mitigating its neurotoxic effects.</div></div>","PeriodicalId":19097,"journal":{"name":"Neurobiology of Disease","volume":"207 ","pages":"Article 106839"},"PeriodicalIF":5.1000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Disease","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969996125000555","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Methamphetamine (METH) abuse increases worldwide. In addition to its acute life-threatening effects, METH is toxic for dopaminergic neurons, increasing the risk of developing Parkinson's disease. The impact of repeated METH binge consumption on dopaminergic and neurotoxicity markers remains unclear. We exposed mice to a repeated “binge-like” METH regime, consisting of three doses over a 6 h interval, repeated three times with 14-day intervals. After the first binge, spontaneous motor activity decreased markedly but remained normal after subsequent binges. Following the first binge, we observed a 25 % loss of nigral dopaminergic cell bodies and significant axon terminal damage as assessed through striatal silver staining, with minimal further degeneration after additional binges. Dopaminergic markers were substantially depleted after the first and second binges, despite partial recovery between binges, dropping to below 20 % of control levels. By one day after the third binge, tyrosine hydroxylase (TH) and vesicular monoamine transporter 2 (VMAT2) stabilized at 50–60 % of control levels, but the dopamine transporter (DAT) remained at only 25 %, showing less recovery. These changes were accompanied by an evolving neuroinflammation pattern, with a transient microglial surge after the first binge and persistent astroglial and temperature responses. Overall, our findings indicate partial recovery of dopaminergic markers and the development of tolerance to METH neurotoxicity. The robust reduction of DAT after the first binge may contribute to this tolerance to subsequence binges by limiting METH entry into neurons thereby mitigating its neurotoxic effects.
期刊介绍:
Neurobiology of Disease is a major international journal at the interface between basic and clinical neuroscience. The journal provides a forum for the publication of top quality research papers on: molecular and cellular definitions of disease mechanisms, the neural systems and underpinning behavioral disorders, the genetics of inherited neurological and psychiatric diseases, nervous system aging, and findings relevant to the development of new therapies.