A novel model to quantify blood transit time in cerebral arteries using ASL-based 4D magnetic resonance angiography with example clinical application in moyamoya disease.
Alex A Bhogal, Simone M Uniken Venema, Pieter T Deckers, Kim van de Ven, Maarten Versluis, Kees P Braun, Albert van der Zwan, Jeroen Cw Siero
{"title":"A novel model to quantify blood transit time in cerebral arteries using ASL-based 4D magnetic resonance angiography with example clinical application in moyamoya disease.","authors":"Alex A Bhogal, Simone M Uniken Venema, Pieter T Deckers, Kim van de Ven, Maarten Versluis, Kees P Braun, Albert van der Zwan, Jeroen Cw Siero","doi":"10.1177/0271678X251321640","DOIUrl":null,"url":null,"abstract":"<p><p>Angiography is critical for visualizing cerebral blood flow in intracranial steno-occlusive diseases. Current 4D magnetic resonance angiography (MRA) techniques primarily focus on macrovascular structures, yet few have quantified hemodynamic timing. This study introduces a novel model to estimate macrovascular arterial transit time (mATT) derived from arterial spin labeling (ASL)-based 4D-MRA. We provide examples of our method that visualize mATT differences throughout the brain of patients with intracranial steno-occlusive disease (moyamoya), as well as changes in mATT resulting from the cerebrovascular reactivity response to an acetazolamide (ACZ) injection. Furthermore, we present a method that projects sparse arterial signals into a 3D native brain-region atlas space and correlates regional mATT with other hemodynamic parameters of interest, such as tissue transit time and cerebrovascular reactivity. This approach offers a non-invasive, quantitative assessment of macrovascular dynamics, with potential to enhance understanding of large-vessel and tissue-level hemodynamics and augment monitoring of treatment outcomes in steno-occlusive disease patients. Furthermore, it sets the stage for more in-depth investigations of the macrovascular contribution to brain hemodynamics.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"271678X251321640"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11826826/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cerebral Blood Flow and Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/0271678X251321640","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Angiography is critical for visualizing cerebral blood flow in intracranial steno-occlusive diseases. Current 4D magnetic resonance angiography (MRA) techniques primarily focus on macrovascular structures, yet few have quantified hemodynamic timing. This study introduces a novel model to estimate macrovascular arterial transit time (mATT) derived from arterial spin labeling (ASL)-based 4D-MRA. We provide examples of our method that visualize mATT differences throughout the brain of patients with intracranial steno-occlusive disease (moyamoya), as well as changes in mATT resulting from the cerebrovascular reactivity response to an acetazolamide (ACZ) injection. Furthermore, we present a method that projects sparse arterial signals into a 3D native brain-region atlas space and correlates regional mATT with other hemodynamic parameters of interest, such as tissue transit time and cerebrovascular reactivity. This approach offers a non-invasive, quantitative assessment of macrovascular dynamics, with potential to enhance understanding of large-vessel and tissue-level hemodynamics and augment monitoring of treatment outcomes in steno-occlusive disease patients. Furthermore, it sets the stage for more in-depth investigations of the macrovascular contribution to brain hemodynamics.
期刊介绍:
JCBFM is the official journal of the International Society for Cerebral Blood Flow & Metabolism, which is committed to publishing high quality, independently peer-reviewed research and review material. JCBFM stands at the interface between basic and clinical neurovascular research, and features timely and relevant research highlighting experimental, theoretical, and clinical aspects of brain circulation, metabolism and imaging. The journal is relevant to any physician or scientist with an interest in brain function, cerebrovascular disease, cerebral vascular regulation and brain metabolism, including neurologists, neurochemists, physiologists, pharmacologists, anesthesiologists, neuroradiologists, neurosurgeons, neuropathologists and neuroscientists.