miR-200c inhibition and catalase accelerate diabetic wound healing.

IF 9 2区 医学 Q1 CELL BIOLOGY Journal of Biomedical Science Pub Date : 2025-02-14 DOI:10.1186/s12929-024-01113-7
Marco D'Agostino, Sara Sileno, Daniela Lulli, Naomi De Luca, Claudia Scarponi, Massimo Teson, Alessio Torcinaro, Francesca De Santa, Corrado Cirielli, Sergio Furgiuele, Chris H Morrell, Elena Dellambra, Teresa Odorisio, Edward G Lakatta, Daniele Avitabile, M C Capogrossi, Alessandra Magenta
{"title":"miR-200c inhibition and catalase accelerate diabetic wound healing.","authors":"Marco D'Agostino, Sara Sileno, Daniela Lulli, Naomi De Luca, Claudia Scarponi, Massimo Teson, Alessio Torcinaro, Francesca De Santa, Corrado Cirielli, Sergio Furgiuele, Chris H Morrell, Elena Dellambra, Teresa Odorisio, Edward G Lakatta, Daniele Avitabile, M C Capogrossi, Alessandra Magenta","doi":"10.1186/s12929-024-01113-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Reactive oxygen species (ROS) are increased in diabetic conditions and play a causal role in diabetic foot ulcers (DFU). We previously showed that ROS up-regulate miR-200c expression, that in turns causes apoptosis, senescence, ROS upregulation and nitric oxide decrease, leading to endothelial disfunction.</p><p><strong>Methods: </strong>The aim of this study is to dissect miR-200c role in DFU and to explore the potential role of anti-miR-200c and antioxidant catalase (CAT) in promoting wound healing (WH). miR-200c inhibition and CAT treatment were performed either in immortalized keratinocytes (HaCaT) or in primary fibroblasts (FBs) and keratinocytes (KCs) deriving from diabetic patients (pts) undergoing amputations. Primary cells deriving from pts undergoing saphenectomies were used as controls. The miR-200c blockade was performed either via lentiviral particles bearing an anti-miR-200c sequence or locked nucleic acid (LNA) anti-miR-200c oligos. Equine CAT was administered on cell medium. The WH assay was performed in vivo on diabetic (db/db) mice by a topical treatment with CAT and LNA anti-miR-200c on wounds dissolved in a Pluronic gel mixture, administered every three days.</p><p><strong>Results: </strong>We found that miR-200c levels were increased by different stimuli known to induce ROS, such as ultraviolet radiation (UV), hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), and high glucose in HaCaT. miR-200c was also upregulated in skin biopsies, in FBs and KCs isolated from pts with DFU vs controls. Forced miR-200c expression induced ROS in both FBs and KCs, and CAT reduced it. miR-200c inhibition improved WH in HaCaT, both under basal conditions and after UV and H<sub>2</sub>O<sub>2</sub> treatment, and the simultaneous treatment with CAT accelerated it. miR-200c inhibition accelerated WH in KCs of DFU pts, increasing its protein targets: sirtuin 1 (SIRT1), the transcription factors FOXO1 and ZEB1 and decreasing p66Shc phosphorylation at Ser-36, that is induced by ROS, and the co-treatment with CAT showed synergistic effects in reducing ROS and cytotoxicity. Interestingly, CAT treatment decreased miR-200c expression in FBs and KCs of DFU pts. Topical administration of anti-miR-200c and CAT in a WH model of diabetic mice accelerated closure.</p><p><strong>Conclusions: </strong>Anti-miR-200c and CAT could be considered a novel treatment for DFU and, possibly, for other types of non-diabetic skin ulcers.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"32 1","pages":"21"},"PeriodicalIF":9.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11827459/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12929-024-01113-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Reactive oxygen species (ROS) are increased in diabetic conditions and play a causal role in diabetic foot ulcers (DFU). We previously showed that ROS up-regulate miR-200c expression, that in turns causes apoptosis, senescence, ROS upregulation and nitric oxide decrease, leading to endothelial disfunction.

Methods: The aim of this study is to dissect miR-200c role in DFU and to explore the potential role of anti-miR-200c and antioxidant catalase (CAT) in promoting wound healing (WH). miR-200c inhibition and CAT treatment were performed either in immortalized keratinocytes (HaCaT) or in primary fibroblasts (FBs) and keratinocytes (KCs) deriving from diabetic patients (pts) undergoing amputations. Primary cells deriving from pts undergoing saphenectomies were used as controls. The miR-200c blockade was performed either via lentiviral particles bearing an anti-miR-200c sequence or locked nucleic acid (LNA) anti-miR-200c oligos. Equine CAT was administered on cell medium. The WH assay was performed in vivo on diabetic (db/db) mice by a topical treatment with CAT and LNA anti-miR-200c on wounds dissolved in a Pluronic gel mixture, administered every three days.

Results: We found that miR-200c levels were increased by different stimuli known to induce ROS, such as ultraviolet radiation (UV), hydrogen peroxide (H2O2), and high glucose in HaCaT. miR-200c was also upregulated in skin biopsies, in FBs and KCs isolated from pts with DFU vs controls. Forced miR-200c expression induced ROS in both FBs and KCs, and CAT reduced it. miR-200c inhibition improved WH in HaCaT, both under basal conditions and after UV and H2O2 treatment, and the simultaneous treatment with CAT accelerated it. miR-200c inhibition accelerated WH in KCs of DFU pts, increasing its protein targets: sirtuin 1 (SIRT1), the transcription factors FOXO1 and ZEB1 and decreasing p66Shc phosphorylation at Ser-36, that is induced by ROS, and the co-treatment with CAT showed synergistic effects in reducing ROS and cytotoxicity. Interestingly, CAT treatment decreased miR-200c expression in FBs and KCs of DFU pts. Topical administration of anti-miR-200c and CAT in a WH model of diabetic mice accelerated closure.

Conclusions: Anti-miR-200c and CAT could be considered a novel treatment for DFU and, possibly, for other types of non-diabetic skin ulcers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biomedical Science
Journal of Biomedical Science 医学-医学:研究与实验
CiteScore
18.50
自引率
0.90%
发文量
95
审稿时长
1 months
期刊介绍: The Journal of Biomedical Science is an open access, peer-reviewed journal that focuses on fundamental and molecular aspects of basic medical sciences. It emphasizes molecular studies of biomedical problems and mechanisms. The National Science and Technology Council (NSTC), Taiwan supports the journal and covers the publication costs for accepted articles. The journal aims to provide an international platform for interdisciplinary discussions and contribute to the advancement of medicine. It benefits both readers and authors by accelerating the dissemination of research information and providing maximum access to scholarly communication. All articles published in the Journal of Biomedical Science are included in various databases such as Biological Abstracts, BIOSIS, CABI, CAS, Citebase, Current contents, DOAJ, Embase, EmBiology, and Global Health, among others.
期刊最新文献
Emergence of population heterogeneity in Klebsiella pneumoniae with a blaOXA-232-harboring plasmid: carbapenem resistance, virulence, and fitness. miR-200c inhibition and catalase accelerate diabetic wound healing. PEX11B palmitoylation couples peroxisomal dysfunction with Schwann cells fail in diabetic neuropathy. Multifunctional hyaluronic acid-based biomimetic/pH-responsive hybrid nanostructured lipid carriers for treating bacterial sepsis. Targeting the fundamentals for tremors: the frequency and amplitude coding in essential tremor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1