Unequal Genetic Redundancies Among MYC bHLH Transcription Factors Underlie Seedling Photomorphogenesis in Arabidopsis.

IF 2.3 3区 生物学 Q2 PLANT SCIENCES Plant Direct Pub Date : 2025-02-13 eCollection Date: 2025-02-01 DOI:10.1002/pld3.70042
Vikas Garhwal, Sreya Das, Sreeramaiah N Gangappa
{"title":"Unequal Genetic Redundancies Among MYC bHLH Transcription Factors Underlie Seedling Photomorphogenesis in Arabidopsis.","authors":"Vikas Garhwal, Sreya Das, Sreeramaiah N Gangappa","doi":"10.1002/pld3.70042","DOIUrl":null,"url":null,"abstract":"<p><p>Light is one of the most critical ecological cues controlling plant growth and development. Plants have evolved complex mechanisms to cope with fluctuating light signals. In Arabidopsis, bHLH transcription factors MYC2, MYC3, and MYC4 have been shown to play a vital role in protecting plants against herbivory and necrotrophic pathogens. While the role of MYC2 in light-mediated seedling development has been studied in some detail, the role of MYC3 and MYC4 still needs to be discovered. Here, we show that MYC4 negatively regulates seedling photomorphogenesis, while the MYC3 function seems redundant. However, the genetic analysis reveals that MYC3/MYC4 together act as positive regulators of seedling photomorphogenic growth as the <i>myc3myc4</i> double mutants showed exaggerated hypocotyl growth compared to the <i>myc3</i> and <i>myc4</i> single mutants and Col-0. Intriguingly, the loss of <i>MYC2</i> function in the <i>myc3myc4</i> double mutant background (<i>myc2myc3myc4</i>) resulted in further enhancement in the hypocotyl growth than <i>myc3myc4</i> double mutants in WL, BL and FRL, suggesting that MYC2/3/4 together play an essential and positive role in meditating optimal seedling photomorphogenesis. Besides, MYC3/MYC4 genetically and physically interact with HY5 to partially inhibit its function in controlling hypocotyl and photo-pigment accumulation. Moreover, our results suggest that COP1 physically interacts and degrades MYC3 and MYC4 through the 26S proteasomal pathway and controls their response to dark and light for fine-tuning HY5 function and seedling photomorphogenesis.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":"9 2","pages":"e700042"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825187/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pld3.70042","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Light is one of the most critical ecological cues controlling plant growth and development. Plants have evolved complex mechanisms to cope with fluctuating light signals. In Arabidopsis, bHLH transcription factors MYC2, MYC3, and MYC4 have been shown to play a vital role in protecting plants against herbivory and necrotrophic pathogens. While the role of MYC2 in light-mediated seedling development has been studied in some detail, the role of MYC3 and MYC4 still needs to be discovered. Here, we show that MYC4 negatively regulates seedling photomorphogenesis, while the MYC3 function seems redundant. However, the genetic analysis reveals that MYC3/MYC4 together act as positive regulators of seedling photomorphogenic growth as the myc3myc4 double mutants showed exaggerated hypocotyl growth compared to the myc3 and myc4 single mutants and Col-0. Intriguingly, the loss of MYC2 function in the myc3myc4 double mutant background (myc2myc3myc4) resulted in further enhancement in the hypocotyl growth than myc3myc4 double mutants in WL, BL and FRL, suggesting that MYC2/3/4 together play an essential and positive role in meditating optimal seedling photomorphogenesis. Besides, MYC3/MYC4 genetically and physically interact with HY5 to partially inhibit its function in controlling hypocotyl and photo-pigment accumulation. Moreover, our results suggest that COP1 physically interacts and degrades MYC3 and MYC4 through the 26S proteasomal pathway and controls their response to dark and light for fine-tuning HY5 function and seedling photomorphogenesis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Direct
Plant Direct Environmental Science-Ecology
CiteScore
5.00
自引率
3.30%
发文量
101
审稿时长
14 weeks
期刊介绍: Plant Direct is a monthly, sound science journal for the plant sciences that gives prompt and equal consideration to papers reporting work dealing with a variety of subjects. Topics include but are not limited to genetics, biochemistry, development, cell biology, biotic stress, abiotic stress, genomics, phenomics, bioinformatics, physiology, molecular biology, and evolution. A collaborative journal launched by the American Society of Plant Biologists, the Society for Experimental Biology and Wiley, Plant Direct publishes papers submitted directly to the journal as well as those referred from a select group of the societies’ journals.
期刊最新文献
Unequal Genetic Redundancies Among MYC bHLH Transcription Factors Underlie Seedling Photomorphogenesis in Arabidopsis. A Promoter Collection for Cell-Targeted Analysis Within the Stomatal Complex. LeafDNet: Transforming Leaf Disease Diagnosis Through Deep Transfer Learning. Delivery of Marker-Free DNA to Plant Genome by the Transgenic Selection-Associated Fragment Elimination (T-SAFE) System. Chromosome Numbers and Reproductive Life Cycles in Green Plants: A Phylotranscriptomic Perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1