Cellodextrin Metabolism and Phosphotransferase System-Catalyzed Uptake in Enterococcus faecalis.

IF 2.6 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Microbiology Pub Date : 2025-02-13 DOI:10.1111/mmi.15346
Victor Combret, Isabelle Rincé, Ronan Cochelin, Florie Desriac, Cécile Muller, Diane Soussan, Axel Hartke, Josef Deutscher, Nicolas Sauvageot
{"title":"Cellodextrin Metabolism and Phosphotransferase System-Catalyzed Uptake in Enterococcus faecalis.","authors":"Victor Combret, Isabelle Rincé, Ronan Cochelin, Florie Desriac, Cécile Muller, Diane Soussan, Axel Hartke, Josef Deutscher, Nicolas Sauvageot","doi":"10.1111/mmi.15346","DOIUrl":null,"url":null,"abstract":"<p><p>Two PTS transporters involved in the uptake of cellobiose and short cellooligosaccharides were identified in Enterococcus faecalis. Genes coding for the different EII proteins are found in a locus composed of three operonic structures expressing two distinct EIIC (CelC1 and CelC2), two identical EIIB (CelB1 and CelB2) and a unique EIIA (CelA1). The EIIA plays a central role in β-glucoside uptake because it is required not only for β-homodiholosides but also for the diheteroside N-acetylglucosamine-L-asparagine. Depending on their size, cellooligosaccharides are preferably transported either by CelC1 (di-saccharides) or by CelC2 (4 glycosidic residues and more), with tri-saccharides being taken up by both EIIC transporters. Moreover, CelA1B2C2 require CelGHI to be functional, three small proteins, the function of which remains unknown. CelA1B1C1 is the main but not exclusive transporter of cellobiose and chitobiose. It is involved in the transport of other β-glucodisaccharides, such as laminaribiose and sophorose. This PTS can be complemented by other transporters highlighting the existence of a network for β-glucoside uptake. This locus is under the control of CelR, a LevR-like transcription activator.</p>","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mmi.15346","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Two PTS transporters involved in the uptake of cellobiose and short cellooligosaccharides were identified in Enterococcus faecalis. Genes coding for the different EII proteins are found in a locus composed of three operonic structures expressing two distinct EIIC (CelC1 and CelC2), two identical EIIB (CelB1 and CelB2) and a unique EIIA (CelA1). The EIIA plays a central role in β-glucoside uptake because it is required not only for β-homodiholosides but also for the diheteroside N-acetylglucosamine-L-asparagine. Depending on their size, cellooligosaccharides are preferably transported either by CelC1 (di-saccharides) or by CelC2 (4 glycosidic residues and more), with tri-saccharides being taken up by both EIIC transporters. Moreover, CelA1B2C2 require CelGHI to be functional, three small proteins, the function of which remains unknown. CelA1B1C1 is the main but not exclusive transporter of cellobiose and chitobiose. It is involved in the transport of other β-glucodisaccharides, such as laminaribiose and sophorose. This PTS can be complemented by other transporters highlighting the existence of a network for β-glucoside uptake. This locus is under the control of CelR, a LevR-like transcription activator.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Microbiology
Molecular Microbiology 生物-生化与分子生物学
CiteScore
7.20
自引率
5.60%
发文量
132
审稿时长
1.7 months
期刊介绍: Molecular Microbiology, the leading primary journal in the microbial sciences, publishes molecular studies of Bacteria, Archaea, eukaryotic microorganisms, and their viruses. Research papers should lead to a deeper understanding of the molecular principles underlying basic physiological processes or mechanisms. Appropriate topics include gene expression and regulation, pathogenicity and virulence, physiology and metabolism, synthesis of macromolecules (proteins, nucleic acids, lipids, polysaccharides, etc), cell biology and subcellular organization, membrane biogenesis and function, traffic and transport, cell-cell communication and signalling pathways, evolution and gene transfer. Articles focused on host responses (cellular or immunological) to pathogens or on microbial ecology should be directed to our sister journals Cellular Microbiology and Environmental Microbiology, respectively.
期刊最新文献
NrdR in Streptococcus and Listeria spp.: DNA Helix Phase Dependence of the Bacterial Ribonucleotide Reductase Repressor Cellodextrin Metabolism and Phosphotransferase System-Catalyzed Uptake in Enterococcus faecalis. MmoD and MmoG Are Crucial for the Synthesis of Soluble Methane Monooxygenase in Methanotrophs Homeostasis of Calnexin Is Essential for the Growth, Virulence, and Hypovirus RNA Accumulation in the Chestnut Blight Fungus Remote Regulation by VirB, the Transcriptional Anti‐Silencer of Shigella Virulence Genes, Provides Mechanistic Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1