Yao Du, Lei Zhang, Yan Yang, Kexin Cheng, Kaihang Li, Yingwen Zhou, Lu Li, Yi Jin, Xiaoqing He
{"title":"Assembly, network and functional compensation of specialists and generalists in poplar rhizosphere under salt stress.","authors":"Yao Du, Lei Zhang, Yan Yang, Kexin Cheng, Kaihang Li, Yingwen Zhou, Lu Li, Yi Jin, Xiaoqing He","doi":"10.1038/s41522-025-00662-5","DOIUrl":null,"url":null,"abstract":"<p><p>Salinity is a major challenge for plant growth, but Populus euphratica, a species native to desert regions, has a remarkable ability to tolerate salt stress. This study aimed to explore how salinity affects the rhizosphere microbiome of P. euphratica, focusing on diversity patterns, assembly mechanisms, network characterization, and the functional roles of specialists and generalists under salt stress conditions. The findings revealed that increased salinity enhances the complexity of the rhizosphere microbial network and the diversity of bacterial specialists. Specialists demonstrated a wider range of environmental adaptation and played a pivotal role in species interactions within the microbial network. Notably, salinity stress altered the structure and assembly of plant rhizosphere specialists, facilitating functional compensation and potentially augmenting the health of P. euphratica. This research offers critical insights into the microbiome dynamics of P. euphratica under salinity stress, advancing the understanding of specialists and generalists in the rhizosphere.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"11 1","pages":"28"},"PeriodicalIF":7.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825717/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-025-00662-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Salinity is a major challenge for plant growth, but Populus euphratica, a species native to desert regions, has a remarkable ability to tolerate salt stress. This study aimed to explore how salinity affects the rhizosphere microbiome of P. euphratica, focusing on diversity patterns, assembly mechanisms, network characterization, and the functional roles of specialists and generalists under salt stress conditions. The findings revealed that increased salinity enhances the complexity of the rhizosphere microbial network and the diversity of bacterial specialists. Specialists demonstrated a wider range of environmental adaptation and played a pivotal role in species interactions within the microbial network. Notably, salinity stress altered the structure and assembly of plant rhizosphere specialists, facilitating functional compensation and potentially augmenting the health of P. euphratica. This research offers critical insights into the microbiome dynamics of P. euphratica under salinity stress, advancing the understanding of specialists and generalists in the rhizosphere.
期刊介绍:
npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.