Anti-Cancer Bioactive Peptide Induces Apoptosis in Gastric Cancer Cells through TP53 Signaling Cascade.

IF 1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Protein and Peptide Letters Pub Date : 2025-02-10 DOI:10.2174/0109298665350654250111144722
Qimuge Suyila, Xian Li, Xiulan Su
{"title":"Anti-Cancer Bioactive Peptide Induces Apoptosis in Gastric Cancer Cells through TP53 Signaling Cascade.","authors":"Qimuge Suyila, Xian Li, Xiulan Su","doi":"10.2174/0109298665350654250111144722","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Gastric cancer has emerged as one of the major diseases threatening human health. Our previous studies indicated that the anti-cancer bioactive peptide (ACBP) inhibits the initiation and progression of gastric cancer through apoptosis and cell cycle arrest, yet the mechanisms remain unclear. To elucidate the relationships between the effects of ACBP and the levels of cell differentiation, as well as the functional mechanisms of ACBP, we conducted a study using three human gastric cancer cell lines: NCI-N87, MGC-803, and another unspecified line.</p><p><strong>Method: </strong>We investigated the impact of ACBP on the survival and morphology of these cancer cell lines, examined apoptosis and cell cycle progression, and detected the expression of TP53, TP63, and TP73 in cancer cells, as well as the expression of Bax, PUMA, and Mcl-1 in a xenograft mouse model. ACBP inhibited the proliferation of all three cancer cell lines in a dose-dependent manner, similar to the positive control and 5-fluorouracil (5-FU). The effect of ACBP correlated with the degree of differentiation of the cancer cells; the lower the differentiation degree, the stronger the inhibitory effect.</p><p><strong>Result: </strong>After ACBP treatment, the expression of TP53, TP63, and TP73 increased in all cell lines. In the xenograft mouse model, ACBP inhibited the growth of MGC-803 cells in vivo. The apoptotic- related genes Bax and PUMA were upregulated, while Mcl-1 was downregulated. ACBP inhibited tumor cell growth by inducing apoptosis through the TP53 signaling cascade, upregulating TP53, TP63, and TP73 and their downstream apoptosis-promoting genes Bax and PUMA while downregulating the anti-apoptotic gene Mcl-1.</p><p><strong>Conclusion: </strong>Notably, after ACBP treatment, Mcl-1 expression was significantly reduced in the tumor tissue of the xenograft model, indicating that ACBP induced apoptosis through the TP53 signaling cascade. This project provides a scientific basis for exploring the antitumor mechanism of ACBP in gastric cancer therapy.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein and Peptide Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0109298665350654250111144722","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Gastric cancer has emerged as one of the major diseases threatening human health. Our previous studies indicated that the anti-cancer bioactive peptide (ACBP) inhibits the initiation and progression of gastric cancer through apoptosis and cell cycle arrest, yet the mechanisms remain unclear. To elucidate the relationships between the effects of ACBP and the levels of cell differentiation, as well as the functional mechanisms of ACBP, we conducted a study using three human gastric cancer cell lines: NCI-N87, MGC-803, and another unspecified line.

Method: We investigated the impact of ACBP on the survival and morphology of these cancer cell lines, examined apoptosis and cell cycle progression, and detected the expression of TP53, TP63, and TP73 in cancer cells, as well as the expression of Bax, PUMA, and Mcl-1 in a xenograft mouse model. ACBP inhibited the proliferation of all three cancer cell lines in a dose-dependent manner, similar to the positive control and 5-fluorouracil (5-FU). The effect of ACBP correlated with the degree of differentiation of the cancer cells; the lower the differentiation degree, the stronger the inhibitory effect.

Result: After ACBP treatment, the expression of TP53, TP63, and TP73 increased in all cell lines. In the xenograft mouse model, ACBP inhibited the growth of MGC-803 cells in vivo. The apoptotic- related genes Bax and PUMA were upregulated, while Mcl-1 was downregulated. ACBP inhibited tumor cell growth by inducing apoptosis through the TP53 signaling cascade, upregulating TP53, TP63, and TP73 and their downstream apoptosis-promoting genes Bax and PUMA while downregulating the anti-apoptotic gene Mcl-1.

Conclusion: Notably, after ACBP treatment, Mcl-1 expression was significantly reduced in the tumor tissue of the xenograft model, indicating that ACBP induced apoptosis through the TP53 signaling cascade. This project provides a scientific basis for exploring the antitumor mechanism of ACBP in gastric cancer therapy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Protein and Peptide Letters
Protein and Peptide Letters 生物-生化与分子生物学
CiteScore
2.90
自引率
0.00%
发文量
98
审稿时长
2 months
期刊介绍: Protein & Peptide Letters publishes letters, original research papers, mini-reviews and guest edited issues in all important aspects of protein and peptide research, including structural studies, advances in recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, and drug design. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallization and preliminary structure determination of biologically important proteins are considered only if they include significant new approaches or deal with proteins of immediate importance, and preliminary structure determinations of biologically important proteins. Purely theoretical/review papers should provide new insight into the principles of protein/peptide structure and function. Manuscripts describing computational work should include some experimental data to provide confirmation of the results of calculations. Protein & Peptide Letters focuses on: Structure Studies Advances in Recombinant Expression Drug Design Chemical Synthesis Function Pharmacology Enzymology Conformational Analysis Immunology Biotechnology Protein Engineering Protein Folding Sequencing Molecular Recognition Purification and Analysis
期刊最新文献
Comparative In Silico and In Vitro Studies of Novel Zinc/Tin Metal Coordinates Bearing BRCA-1 Mimetics on Wtp53 and Mtp53 Proteins. A Review on the Potential Role of Humanin Peptide and its Analogs in the Regulation of Autophagy Pathways for Therapeutic Application in Metabolic Disorders. Inconsistent Protein Stability Despite Pre-HECT Domain Helix: Unveiling Variability in HECT Ligases. miR-584-5p Regulates MSMO1 to Modulate the AKT/PI3K Pathway and Inhibit Breast Cancer Progression. Anti-Cancer Bioactive Peptide Induces Apoptosis in Gastric Cancer Cells through TP53 Signaling Cascade.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1