Sodium taurocholate co-transporting polypeptide deficiency attenuates acetaminophen-induced hepatotoxicity via regulating expression of drug metabolism enzymes in mice
{"title":"Sodium taurocholate co-transporting polypeptide deficiency attenuates acetaminophen-induced hepatotoxicity via regulating expression of drug metabolism enzymes in mice","authors":"Fangji Yang , Lina Wu , Wenxiong Xu , Yuankai Wu , Shu Zhu , Yuzhen Zhang , Yutian Chong , Liang Peng","doi":"10.1016/j.taap.2025.117266","DOIUrl":null,"url":null,"abstract":"<div><div>Acetaminophen (APAP) overdose can induce liver injury and is generally accompanied by disruption of bile acid homeostasis. Physiologically, sodium taurocholate <em>co</em>-transporting polypeptide (NTCP) participates in the uptake of bile acids from portal blood into hepatocytes to maintain enterohepatic recirculation but its role in APAP-induced hepatotoxicity is unclear. Wild-type (WT) C57BL/6J and NTCP knockout (KO) mice were injected with 400<!--> <!-->mg/kg APAP and liver injury was evaluated by serum biochemical markers and histologic evaluation. RNA-seq analysis was performed to evaluate the liver gene expression profiles in APAP-treated mice. Compared with WT mice, the exposure to APAP overdose caused liver dysfunction, oxidative stress, inflammation and cell death, which were ameliorated by NTCP deficiency. APAP detoxification, metabolism, and elimination were significantly accelerated by the upregulation of UDP-glucuronosyltransferase (Ugt1a1, Ugt1a6 and Ugt1a9), sulfotransferase (Sult1a1 and Sult2a1) and bile acid efflux transporters (Abcc2/3/4) in NTCP KO mice compared with WT mice. Interestingly, APAP-induced hepatotoxicity was ameliorated using Irbesartan and Ezetimibe (NTCP inhibitors). In conclusion, NTCP deficiency attenuates APAP-induced hepatotoxicity by enhancing the metabolism and elimination of APAP. NTCP inhibitors protect against APAP-induced hepatotoxicity and thus are a potential therapeutic option.</div></div>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":"497 ","pages":"Article 117266"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and applied pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041008X25000420","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Acetaminophen (APAP) overdose can induce liver injury and is generally accompanied by disruption of bile acid homeostasis. Physiologically, sodium taurocholate co-transporting polypeptide (NTCP) participates in the uptake of bile acids from portal blood into hepatocytes to maintain enterohepatic recirculation but its role in APAP-induced hepatotoxicity is unclear. Wild-type (WT) C57BL/6J and NTCP knockout (KO) mice were injected with 400 mg/kg APAP and liver injury was evaluated by serum biochemical markers and histologic evaluation. RNA-seq analysis was performed to evaluate the liver gene expression profiles in APAP-treated mice. Compared with WT mice, the exposure to APAP overdose caused liver dysfunction, oxidative stress, inflammation and cell death, which were ameliorated by NTCP deficiency. APAP detoxification, metabolism, and elimination were significantly accelerated by the upregulation of UDP-glucuronosyltransferase (Ugt1a1, Ugt1a6 and Ugt1a9), sulfotransferase (Sult1a1 and Sult2a1) and bile acid efflux transporters (Abcc2/3/4) in NTCP KO mice compared with WT mice. Interestingly, APAP-induced hepatotoxicity was ameliorated using Irbesartan and Ezetimibe (NTCP inhibitors). In conclusion, NTCP deficiency attenuates APAP-induced hepatotoxicity by enhancing the metabolism and elimination of APAP. NTCP inhibitors protect against APAP-induced hepatotoxicity and thus are a potential therapeutic option.
期刊介绍:
Toxicology and Applied Pharmacology publishes original scientific research of relevance to animals or humans pertaining to the action of chemicals, drugs, or chemically-defined natural products.
Regular articles address mechanistic approaches to physiological, pharmacologic, biochemical, cellular, or molecular understanding of toxicologic/pathologic lesions and to methods used to describe these responses. Safety Science articles address outstanding state-of-the-art preclinical and human translational characterization of drug and chemical safety employing cutting-edge science. Highly significant Regulatory Safety Science articles will also be considered in this category. Papers concerned with alternatives to the use of experimental animals are encouraged.
Short articles report on high impact studies of broad interest to readers of TAAP that would benefit from rapid publication. These articles should contain no more than a combined total of four figures and tables. Authors should include in their cover letter the justification for consideration of their manuscript as a short article.