Edgar Alberto Vega Noguera, Simeón Casanova Trujillo, Eduardo Ibargüen-Mondragón
{"title":"A within-host model on the interactions of sensitive and resistant <i>Helicobacter pylori</i> to antibiotic therapy considering immune response.","authors":"Edgar Alberto Vega Noguera, Simeón Casanova Trujillo, Eduardo Ibargüen-Mondragón","doi":"10.3934/mbe.2025009","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we formulated a mathematical model to describe growth, acquisition of bacterial resistance, and immune response for Helicobacter pylori (<i>H. pylori</i>). The qualitative analysis revealed the existence of five equilibrium solutions: (ⅰ) An infection-free state, in which the bacterial population and immune cells are suppressed, (ⅱ) an endemic state only with resistant bacteria without immune cells, (ⅲ) an endemic state only with resistant bacteria and immune cells, (ⅳ) an endemic state of bacterial coexistence without immune cells, and (ⅴ) an endemic coexistence state with immune response. The stability analysis showed that the equilibrium solutions (ⅰ) and (ⅳ) are locally asymptotically stable, whereas the equilibria (ⅱ) and (ⅲ) are unstable. We found four threshold conditions that establish the existence and stability of equilibria, which determine when the populations of sensitive <i>H. pylori</i> and resistant <i>H. pylori</i> are controlled or eliminated, or when the infection progresses only with resistant bacteria or with both bacterial populations. The numerical simulations corroborated the qualitative analysis, and provided information on the emergence of a limit cycle that breaks the stability of the coexistence equilibrium. The results revealed that the key to controlling bacterial progression is to keep bacterial growth thresholds below 1; this can be achieved by applying an appropriate combination of antibiotics and correct stimulation of the immune response. Otherwise, when bacterial growth thresholds exceed 1, the bacterial persistence scenarios mentioned above occur.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"22 1","pages":"185-224"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2025009","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we formulated a mathematical model to describe growth, acquisition of bacterial resistance, and immune response for Helicobacter pylori (H. pylori). The qualitative analysis revealed the existence of five equilibrium solutions: (ⅰ) An infection-free state, in which the bacterial population and immune cells are suppressed, (ⅱ) an endemic state only with resistant bacteria without immune cells, (ⅲ) an endemic state only with resistant bacteria and immune cells, (ⅳ) an endemic state of bacterial coexistence without immune cells, and (ⅴ) an endemic coexistence state with immune response. The stability analysis showed that the equilibrium solutions (ⅰ) and (ⅳ) are locally asymptotically stable, whereas the equilibria (ⅱ) and (ⅲ) are unstable. We found four threshold conditions that establish the existence and stability of equilibria, which determine when the populations of sensitive H. pylori and resistant H. pylori are controlled or eliminated, or when the infection progresses only with resistant bacteria or with both bacterial populations. The numerical simulations corroborated the qualitative analysis, and provided information on the emergence of a limit cycle that breaks the stability of the coexistence equilibrium. The results revealed that the key to controlling bacterial progression is to keep bacterial growth thresholds below 1; this can be achieved by applying an appropriate combination of antibiotics and correct stimulation of the immune response. Otherwise, when bacterial growth thresholds exceed 1, the bacterial persistence scenarios mentioned above occur.
期刊介绍:
Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing.
MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).