{"title":"A combination of deep learning models and type-2 fuzzy for EEG motor imagery classification through spatiotemporal-frequency features.","authors":"Ensong Jiang, Tangsen Huang, Xiangdong Yin","doi":"10.1080/03091902.2025.2463577","DOIUrl":null,"url":null,"abstract":"<p><p>Developing a robust and effective technique is crucial for interpreting a user's brainwave signals accurately in the realm of biomedical signal processing. The variability and uncertainty present in EEG patterns over time, compounded by noise, pose notable challenges, particularly in mental tasks like motor imagery. Introducing fuzzy components can enhance the system's ability to withstand noisy environments. The emergence of deep learning has significantly impacted artificial intelligence and data analysis, prompting extensive exploration into assessing and understanding brain signals. This work introduces a hybrid series architecture called FCLNET, which combines Compact-CNN to extract frequency and spatial features alongside the LSTM network for temporal feature extraction. The activation functions in the CNN architecture were implemented using type-2 fuzzy functions to tackle uncertainties. Hyperparameters of the FCLNET model are tuned by the Bayesian optimisation algorithm. The efficacy of this approach is assessed through the BCI Competition IV-2a database and the BCI Competition IV-1 database. By incorporating type-2 fuzzy activation functions and employing Bayesian optimisation for tuning, the proposed architecture indicates good classification accuracy compared to the literature. Outcomes showcase the exceptional achievements of the FCLNET model, suggesting that integrating fuzzy units into other classifiers could lead to advancements in motor imagery-based BCI systems.</p>","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":" ","pages":"1-14"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03091902.2025.2463577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Developing a robust and effective technique is crucial for interpreting a user's brainwave signals accurately in the realm of biomedical signal processing. The variability and uncertainty present in EEG patterns over time, compounded by noise, pose notable challenges, particularly in mental tasks like motor imagery. Introducing fuzzy components can enhance the system's ability to withstand noisy environments. The emergence of deep learning has significantly impacted artificial intelligence and data analysis, prompting extensive exploration into assessing and understanding brain signals. This work introduces a hybrid series architecture called FCLNET, which combines Compact-CNN to extract frequency and spatial features alongside the LSTM network for temporal feature extraction. The activation functions in the CNN architecture were implemented using type-2 fuzzy functions to tackle uncertainties. Hyperparameters of the FCLNET model are tuned by the Bayesian optimisation algorithm. The efficacy of this approach is assessed through the BCI Competition IV-2a database and the BCI Competition IV-1 database. By incorporating type-2 fuzzy activation functions and employing Bayesian optimisation for tuning, the proposed architecture indicates good classification accuracy compared to the literature. Outcomes showcase the exceptional achievements of the FCLNET model, suggesting that integrating fuzzy units into other classifiers could lead to advancements in motor imagery-based BCI systems.
期刊介绍:
The Journal of Medical Engineering & Technology is an international, independent, multidisciplinary, bimonthly journal promoting an understanding of the physiological processes underlying disease processes and the appropriate application of technology. Features include authoritative review papers, the reporting of original research, and evaluation reports on new and existing techniques and devices. Each issue of the journal contains a comprehensive information service which provides news relevant to the world of medical technology, details of new products, book reviews, and selected contents of related journals.