{"title":"An arrhythmia classification using a deep learning and optimisation-based methodology.","authors":"Suvita Rani Sharma, Birmohan Singh, Manpreet Kaur","doi":"10.1080/03091902.2025.2463574","DOIUrl":null,"url":null,"abstract":"<p><p>The work proposes a methodology for five different classes of ECG signals. The methodology utilises moving average filter and discrete wavelet transformation for the remove of baseline wandering and powerline interference. The preprocessed signals are segmented by R peak detection process. Thereafter, the greyscale and scalograms images have been formed. The features of the images are extracted using the EfficientNet-B0 deep learning model. These features are normalised using z-score normalisation method and then optimal features are selected using the hybrid feature selection method. The hybrid feature selection is constructed utilising two filter methods and Self Adaptive Bald Eagle Search (SABES) optimisation algorithm. The proposed methodology has been applied to the ECG signals for the classification of the five types of beats. The methodology acquired 99.31% of accuracy.</p>","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":" ","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03091902.2025.2463574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The work proposes a methodology for five different classes of ECG signals. The methodology utilises moving average filter and discrete wavelet transformation for the remove of baseline wandering and powerline interference. The preprocessed signals are segmented by R peak detection process. Thereafter, the greyscale and scalograms images have been formed. The features of the images are extracted using the EfficientNet-B0 deep learning model. These features are normalised using z-score normalisation method and then optimal features are selected using the hybrid feature selection method. The hybrid feature selection is constructed utilising two filter methods and Self Adaptive Bald Eagle Search (SABES) optimisation algorithm. The proposed methodology has been applied to the ECG signals for the classification of the five types of beats. The methodology acquired 99.31% of accuracy.
期刊介绍:
The Journal of Medical Engineering & Technology is an international, independent, multidisciplinary, bimonthly journal promoting an understanding of the physiological processes underlying disease processes and the appropriate application of technology. Features include authoritative review papers, the reporting of original research, and evaluation reports on new and existing techniques and devices. Each issue of the journal contains a comprehensive information service which provides news relevant to the world of medical technology, details of new products, book reviews, and selected contents of related journals.