Transforming Informed Consent Generation Using Large Language Models: Mixed Methods Study.

IF 3.1 3区 医学 Q2 MEDICAL INFORMATICS JMIR Medical Informatics Pub Date : 2025-02-13 DOI:10.2196/68139
Qiming Shi, Katherine Luzuriaga, Jeroan J Allison, Asil Oztekin, Jamie M Faro, Joy L Lee, Nathaniel Hafer, Margaret McManus, Adrian H Zai
{"title":"Transforming Informed Consent Generation Using Large Language Models: Mixed Methods Study.","authors":"Qiming Shi, Katherine Luzuriaga, Jeroan J Allison, Asil Oztekin, Jamie M Faro, Joy L Lee, Nathaniel Hafer, Margaret McManus, Adrian H Zai","doi":"10.2196/68139","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Informed consent forms (ICFs) for clinical trials have become increasingly complex, often hindering participant comprehension and engagement due to legal jargon and lengthy content. The recent advances in large language models (LLMs) present an opportunity to streamline the ICF creation process while improving readability, understandability, and actionability.</p><p><strong>Objectives: </strong>This study aims to evaluate the performance of the Mistral 8x22B LLM in generating ICFs with improved readability, understandability, and actionability. Specifically, we evaluate the model's effectiveness in generating ICFs that are readable, understandable, and actionable while maintaining the accuracy and completeness.</p><p><strong>Methods: </strong>We processed 4 clinical trial protocols from the institutional review board of UMass Chan Medical School using the Mistral 8x22B model to generate key information sections of ICFs. A multidisciplinary team of 8 evaluators, including clinical researchers and health informaticians, assessed the generated ICFs against human-generated counterparts for completeness, accuracy, readability, understandability, and actionability. Readability, Understandability, and Actionability of Key Information indicators, which include 18 binary-scored items, were used to evaluate these aspects, with higher scores indicating greater accessibility, comprehensibility, and actionability of the information. Statistical analysis, including Wilcoxon rank sum tests and intraclass correlation coefficient calculations, was used to compare outputs.</p><p><strong>Results: </strong>LLM-generated ICFs demonstrated comparable performance to human-generated versions across key sections, with no significant differences in accuracy and completeness (P>.10). The LLM outperformed human-generated ICFs in readability (Readability, Understandability, and Actionability of Key Information score of 76.39% vs 66.67%; Flesch-Kincaid grade level of 7.95 vs 8.38) and understandability (90.63% vs 67.19%; P=.02). The LLM-generated content achieved a perfect score in actionability compared with the human-generated version (100% vs 0%; P<.001). Intraclass correlation coefficient for evaluator consistency was high at 0.83 (95% CI 0.64-1.03), indicating good reliability across assessments.</p><p><strong>Conclusions: </strong>The Mistral 8x22B LLM showed promising capabilities in enhancing the readability, understandability, and actionability of ICFs without sacrificing accuracy or completeness. LLMs present a scalable, efficient solution for ICF generation, potentially enhancing participant comprehension and consent in clinical trials.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"13 ","pages":"e68139"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/68139","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Informed consent forms (ICFs) for clinical trials have become increasingly complex, often hindering participant comprehension and engagement due to legal jargon and lengthy content. The recent advances in large language models (LLMs) present an opportunity to streamline the ICF creation process while improving readability, understandability, and actionability.

Objectives: This study aims to evaluate the performance of the Mistral 8x22B LLM in generating ICFs with improved readability, understandability, and actionability. Specifically, we evaluate the model's effectiveness in generating ICFs that are readable, understandable, and actionable while maintaining the accuracy and completeness.

Methods: We processed 4 clinical trial protocols from the institutional review board of UMass Chan Medical School using the Mistral 8x22B model to generate key information sections of ICFs. A multidisciplinary team of 8 evaluators, including clinical researchers and health informaticians, assessed the generated ICFs against human-generated counterparts for completeness, accuracy, readability, understandability, and actionability. Readability, Understandability, and Actionability of Key Information indicators, which include 18 binary-scored items, were used to evaluate these aspects, with higher scores indicating greater accessibility, comprehensibility, and actionability of the information. Statistical analysis, including Wilcoxon rank sum tests and intraclass correlation coefficient calculations, was used to compare outputs.

Results: LLM-generated ICFs demonstrated comparable performance to human-generated versions across key sections, with no significant differences in accuracy and completeness (P>.10). The LLM outperformed human-generated ICFs in readability (Readability, Understandability, and Actionability of Key Information score of 76.39% vs 66.67%; Flesch-Kincaid grade level of 7.95 vs 8.38) and understandability (90.63% vs 67.19%; P=.02). The LLM-generated content achieved a perfect score in actionability compared with the human-generated version (100% vs 0%; P<.001). Intraclass correlation coefficient for evaluator consistency was high at 0.83 (95% CI 0.64-1.03), indicating good reliability across assessments.

Conclusions: The Mistral 8x22B LLM showed promising capabilities in enhancing the readability, understandability, and actionability of ICFs without sacrificing accuracy or completeness. LLMs present a scalable, efficient solution for ICF generation, potentially enhancing participant comprehension and consent in clinical trials.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
JMIR Medical Informatics
JMIR Medical Informatics Medicine-Health Informatics
CiteScore
7.90
自引率
3.10%
发文量
173
审稿时长
12 weeks
期刊介绍: JMIR Medical Informatics (JMI, ISSN 2291-9694) is a top-rated, tier A journal which focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. It has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals. Published by JMIR Publications, publisher of the Journal of Medical Internet Research (JMIR), the leading eHealth/mHealth journal (Impact Factor 2016: 5.175), JMIR Med Inform has a slightly different scope (emphasizing more on applications for clinicians and health professionals rather than consumers/citizens, which is the focus of JMIR), publishes even faster, and also allows papers which are more technical or more formative than what would be published in the Journal of Medical Internet Research.
期刊最新文献
A Risk Warning Model for Anemia Based on Facial Visible Light Reflectance Spectroscopy: Cross-Sectional Study. Transforming Informed Consent Generation Using Large Language Models: Mixed Methods Study. Performance Assessment of Large Language Models in Medical Consultation: Comparative Study. Correction: Distributed Statistical Analyses: A Scoping Review and Examples of Operational Frameworks Adapted to Health Analytics. Enhancing Surgery Scheduling in Health Care Settings With Metaheuristic Optimization Models: Algorithm Validation Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1