A Risk Warning Model for Anemia Based on Facial Visible Light Reflectance Spectroscopy: Cross-Sectional Study.

IF 3.1 3区 医学 Q2 MEDICAL INFORMATICS JMIR Medical Informatics Pub Date : 2025-02-14 DOI:10.2196/64204
Yahan Zhang, Yi Chun, Hongyuan Fu, Wen Jiao, Jizhang Bao, Tao Jiang, Longtao Cui, Xiaojuan Hu, Ji Cui, Xipeng Qiu, Liping Tu, Jiatuo Xu
{"title":"A Risk Warning Model for Anemia Based on Facial Visible Light Reflectance Spectroscopy: Cross-Sectional Study.","authors":"Yahan Zhang, Yi Chun, Hongyuan Fu, Wen Jiao, Jizhang Bao, Tao Jiang, Longtao Cui, Xiaojuan Hu, Ji Cui, Xipeng Qiu, Liping Tu, Jiatuo Xu","doi":"10.2196/64204","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Anemia is a global public health issue causing symptoms such as fatigue, weakness, and cognitive decline. Furthermore, anemia is associated with various diseases and increases the risk of postoperative complications and mortality. Frequent invasive blood tests for diagnosis also pose additional discomfort and risks to patients.</p><p><strong>Objective: </strong>This study aims to assess the facial spectral characteristics of patients with anemia and to develop a predictive model for anemia risk using machine learning approaches.</p><p><strong>Methods: </strong>Between August 2022 and September 2023, we collected facial image data from 78 anemic patients who met the inclusion criteria from the Hematology Department of Shanghai Hospital of Traditional Chinese Medicine. Between March 2023 and September 2023, we collected data from 78 healthy adult participants from Shanghai Jiading Community Health Center and Shanghai Gaohang Community Health Center. A comprehensive statistical analysis was performed to evaluate differences in spectral characteristics between the anemic patients and healthy controls. Then, we used 10 different machine learning algorithms to create a predictive model for anemia. The least absolute shrinkage and selection operator was used to analyze the predictors. We integrated multiple machine learning classification models to identify the optimal model and developed Shapley additive explanations (SHAP) for personalized risk assessment.</p><p><strong>Results: </strong>The study identified significant differences in facial spectral features between anemic patients and healthy controls. The support vector machine classifier outperformed other classification models, achieving an accuracy of 0.875 (95% CI 0.825-0.925) for distinguishing between the anemia and healthy control groups. In the SHAP interpretation of the model, forehead-570 nm, right cheek-520 nm, right zygomatic-570 nm, jaw-570 nm, and left cheek-610 nm were the features with the highest contributions.</p><p><strong>Conclusions: </strong>Facial spectral data demonstrated clinical significance in anemia diagnosis, and the early warning model for anemia risk constructed based on spectral information demonstrated a high accuracy rate.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"13 ","pages":"e64204"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/64204","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Anemia is a global public health issue causing symptoms such as fatigue, weakness, and cognitive decline. Furthermore, anemia is associated with various diseases and increases the risk of postoperative complications and mortality. Frequent invasive blood tests for diagnosis also pose additional discomfort and risks to patients.

Objective: This study aims to assess the facial spectral characteristics of patients with anemia and to develop a predictive model for anemia risk using machine learning approaches.

Methods: Between August 2022 and September 2023, we collected facial image data from 78 anemic patients who met the inclusion criteria from the Hematology Department of Shanghai Hospital of Traditional Chinese Medicine. Between March 2023 and September 2023, we collected data from 78 healthy adult participants from Shanghai Jiading Community Health Center and Shanghai Gaohang Community Health Center. A comprehensive statistical analysis was performed to evaluate differences in spectral characteristics between the anemic patients and healthy controls. Then, we used 10 different machine learning algorithms to create a predictive model for anemia. The least absolute shrinkage and selection operator was used to analyze the predictors. We integrated multiple machine learning classification models to identify the optimal model and developed Shapley additive explanations (SHAP) for personalized risk assessment.

Results: The study identified significant differences in facial spectral features between anemic patients and healthy controls. The support vector machine classifier outperformed other classification models, achieving an accuracy of 0.875 (95% CI 0.825-0.925) for distinguishing between the anemia and healthy control groups. In the SHAP interpretation of the model, forehead-570 nm, right cheek-520 nm, right zygomatic-570 nm, jaw-570 nm, and left cheek-610 nm were the features with the highest contributions.

Conclusions: Facial spectral data demonstrated clinical significance in anemia diagnosis, and the early warning model for anemia risk constructed based on spectral information demonstrated a high accuracy rate.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
JMIR Medical Informatics
JMIR Medical Informatics Medicine-Health Informatics
CiteScore
7.90
自引率
3.10%
发文量
173
审稿时长
12 weeks
期刊介绍: JMIR Medical Informatics (JMI, ISSN 2291-9694) is a top-rated, tier A journal which focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. It has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals. Published by JMIR Publications, publisher of the Journal of Medical Internet Research (JMIR), the leading eHealth/mHealth journal (Impact Factor 2016: 5.175), JMIR Med Inform has a slightly different scope (emphasizing more on applications for clinicians and health professionals rather than consumers/citizens, which is the focus of JMIR), publishes even faster, and also allows papers which are more technical or more formative than what would be published in the Journal of Medical Internet Research.
期刊最新文献
A Risk Warning Model for Anemia Based on Facial Visible Light Reflectance Spectroscopy: Cross-Sectional Study. Transforming Informed Consent Generation Using Large Language Models: Mixed Methods Study. Performance Assessment of Large Language Models in Medical Consultation: Comparative Study. Correction: Distributed Statistical Analyses: A Scoping Review and Examples of Operational Frameworks Adapted to Health Analytics. Enhancing Surgery Scheduling in Health Care Settings With Metaheuristic Optimization Models: Algorithm Validation Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1