In vivo electrophysiology recordings and computational modeling can predict octopus arm movement.

Nitish Satya Sai Gedela, Ryan D Radawiec, Sachin Salim, Julianna Richie, Cynthia Chestek, Anne Draelos, Galit Pelled
{"title":"In vivo electrophysiology recordings and computational modeling can predict octopus arm movement.","authors":"Nitish Satya Sai Gedela, Ryan D Radawiec, Sachin Salim, Julianna Richie, Cynthia Chestek, Anne Draelos, Galit Pelled","doi":"10.1186/s42234-025-00166-9","DOIUrl":null,"url":null,"abstract":"<p><p>The octopus has many features that make it advantageous for revealing principles of motor circuits and control and predicting behavior. Here, an array of carbon electrodes providing single-unit electrophysiology recordings were implanted into the octopus anterior nerve cord. The number of spikes and arm movements in response to stimulation at different locations along the arm were recorded. We observed that the number of spikes occurring within the first 100 ms after stimulation were predictive of the resultant movement response. Machine learning models showed that temporal electrophysiological features could be used to predict whether an arm movement occurred with 88.64% confidence, and if it was a lateral arm movement or a grasping motion with 75.45% confidence. Both supervised and unsupervised methods were applied to gain streaming measurements of octopus arm movements and how their motor circuitry produces rich movement types in real time. For kinematic analysis, deep learning models and unsupervised dimensionality reduction identified a consistent set of features that could be used to distinguish different types of arm movements. The neural circuits and the computational models identified here generated predictions for how to evoke a particular, complex movement in an orchestrated sequence for an individual motor circuit. This study demonstrates how real-time motor behaviors can be predicted and distinguished, contributing to the development of brain-machine interfaces. The ability to accurately model and predict complex movement patterns has broad implications for advancing technologies in robotics, neuroprosthetics, and artificial intelligence, paving the way for more sophisticated and adaptable systems.</p>","PeriodicalId":72363,"journal":{"name":"Bioelectronic medicine","volume":"11 1","pages":"4"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11827351/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectronic medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42234-025-00166-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The octopus has many features that make it advantageous for revealing principles of motor circuits and control and predicting behavior. Here, an array of carbon electrodes providing single-unit electrophysiology recordings were implanted into the octopus anterior nerve cord. The number of spikes and arm movements in response to stimulation at different locations along the arm were recorded. We observed that the number of spikes occurring within the first 100 ms after stimulation were predictive of the resultant movement response. Machine learning models showed that temporal electrophysiological features could be used to predict whether an arm movement occurred with 88.64% confidence, and if it was a lateral arm movement or a grasping motion with 75.45% confidence. Both supervised and unsupervised methods were applied to gain streaming measurements of octopus arm movements and how their motor circuitry produces rich movement types in real time. For kinematic analysis, deep learning models and unsupervised dimensionality reduction identified a consistent set of features that could be used to distinguish different types of arm movements. The neural circuits and the computational models identified here generated predictions for how to evoke a particular, complex movement in an orchestrated sequence for an individual motor circuit. This study demonstrates how real-time motor behaviors can be predicted and distinguished, contributing to the development of brain-machine interfaces. The ability to accurately model and predict complex movement patterns has broad implications for advancing technologies in robotics, neuroprosthetics, and artificial intelligence, paving the way for more sophisticated and adaptable systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.90
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
In vivo electrophysiology recordings and computational modeling can predict octopus arm movement. Advice for translational neuroscience: move deliberately and build things. Advancing cancer therapy with custom-built alternating electric field devices. Next generation bioelectronic medicine: making the case for non-invasive closed-loop autonomic neuromodulation. Exploring the efficacy of Transcutaneous Auricular Vagus nerve stimulation (taVNS) in modulating local and systemic inflammation in experimental models of colitis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1