{"title":"A 0.53-<i>μ</i>W/channel calibration-free spike detection IC with 98.8-%-accuracy based on stationary wavelet transforms and Teager energy operators.","authors":"Zhining Zhou, Zichen Hu, Hongming Lyu","doi":"10.1088/1741-2552/adb5c4","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. The brain-computer interface is currently experiencing a surge in the number of recording channels, resulting in a vast amount of raw data. It has become crucial to reliably detect neural spikes from a large population of neurons in the presence of noise, in order to constrain the transmission bandwidth.<i>Approach</i>. We investigate various time-frequency analysis methods for spike detection, followed by an exploration of energy operators amplifying spikes and signal statistics for adaptive thresholding. Subsequently, we introduce a precise and computationally efficient spike detection module, leveraging stationary wavelet transform (SWT), Teager energy operator, and root-mean-square calculator. This module is capable of autonomously adapting to different levels of noise. The SWT effectively eliminates high-frequency noise, enhancing the performance of the energy operators. The hardware computational process is simplified through the use of the lifting scheme and a channel-interleaving architecture.<i>Main results</i>. We evaluate the proposed spike detector with adaptive threshold on the publicly available WaveClus datasets. The detector achieves an average accuracy of 98.84%. The application-specific integrated circuit (ASIC) implementation results of the spike detector demonstrate an optimized interleaving channel of 8. In a 65 nm technology, the 8-channel spike detector consumes a power of 0.532<i>μ</i>W Ch<sup>-1</sup>and occupies an area of 0.00645 mm<sup>2</sup>Ch<sup>-1</sup>, operating at a 1.2 V supply voltage.<i>Significance</i>. The proposed spike detection processor offers one of the highest accuracies among state-of-the-art spike detection methods. Importantly, the ASIC explores the considerations in the scalability and hardware costs. The proposed design provides a systematic solution on spike detection with adaptive thresholding, offering a high accuracy while maintaining low power and area consumptions.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/adb5c4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objective. The brain-computer interface is currently experiencing a surge in the number of recording channels, resulting in a vast amount of raw data. It has become crucial to reliably detect neural spikes from a large population of neurons in the presence of noise, in order to constrain the transmission bandwidth.Approach. We investigate various time-frequency analysis methods for spike detection, followed by an exploration of energy operators amplifying spikes and signal statistics for adaptive thresholding. Subsequently, we introduce a precise and computationally efficient spike detection module, leveraging stationary wavelet transform (SWT), Teager energy operator, and root-mean-square calculator. This module is capable of autonomously adapting to different levels of noise. The SWT effectively eliminates high-frequency noise, enhancing the performance of the energy operators. The hardware computational process is simplified through the use of the lifting scheme and a channel-interleaving architecture.Main results. We evaluate the proposed spike detector with adaptive threshold on the publicly available WaveClus datasets. The detector achieves an average accuracy of 98.84%. The application-specific integrated circuit (ASIC) implementation results of the spike detector demonstrate an optimized interleaving channel of 8. In a 65 nm technology, the 8-channel spike detector consumes a power of 0.532μW Ch-1and occupies an area of 0.00645 mm2Ch-1, operating at a 1.2 V supply voltage.Significance. The proposed spike detection processor offers one of the highest accuracies among state-of-the-art spike detection methods. Importantly, the ASIC explores the considerations in the scalability and hardware costs. The proposed design provides a systematic solution on spike detection with adaptive thresholding, offering a high accuracy while maintaining low power and area consumptions.