Xin Huang, Jose L Lado, Jani Sainio, Peter Liljeroth, Somesh Chandra Ganguli
{"title":"Doped Mott Phase and Charge Correlations in Monolayer 1T-NbSe_{2}.","authors":"Xin Huang, Jose L Lado, Jani Sainio, Peter Liljeroth, Somesh Chandra Ganguli","doi":"10.1103/PhysRevLett.134.046504","DOIUrl":null,"url":null,"abstract":"<p><p>The doped Hubbard model is one of the paradigmatic platforms to engineer exotic quantum many-body states, including charge-ordered states, strange metals, and unconventional superconductors. While undoped and doped correlated phases have been experimentally realized in a variety of twisted van der Waals materials, experiments in monolayer materials, and in particular 1T transition metal dichalcogenides, have solely reached the conventional insulating undoped regime. Correlated phases in monolayer two-dimensional materials have much higher associated energy scales than their twisted counterparts, making doped correlated monolayers an attractive platform for high temperature correlated quantum matter. Here, we demonstrate the realization of a doped Mott phase in a van der Waals dichalcogenide 1T-NbSe_{2} monolayer. The system is electron doped due to electron transfer from a monolayer van der Waals substrate via proximity, leading to a correlated triangular lattice with both half-filled and fully filled sites. We analyze the distribution of the half-filled and filled sites and show the arrangement is unlikely to be controlled by disorder alone, and we show that the presence of competing nonlocal many-body correlations would account for the charge correlations found experimentally. Our results establish 1T-NbSe_{2} as a potential monolayer platform to explore correlated doped Mott physics in a frustrated lattice.</p>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"134 4","pages":"046504"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevLett.134.046504","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The doped Hubbard model is one of the paradigmatic platforms to engineer exotic quantum many-body states, including charge-ordered states, strange metals, and unconventional superconductors. While undoped and doped correlated phases have been experimentally realized in a variety of twisted van der Waals materials, experiments in monolayer materials, and in particular 1T transition metal dichalcogenides, have solely reached the conventional insulating undoped regime. Correlated phases in monolayer two-dimensional materials have much higher associated energy scales than their twisted counterparts, making doped correlated monolayers an attractive platform for high temperature correlated quantum matter. Here, we demonstrate the realization of a doped Mott phase in a van der Waals dichalcogenide 1T-NbSe_{2} monolayer. The system is electron doped due to electron transfer from a monolayer van der Waals substrate via proximity, leading to a correlated triangular lattice with both half-filled and fully filled sites. We analyze the distribution of the half-filled and filled sites and show the arrangement is unlikely to be controlled by disorder alone, and we show that the presence of competing nonlocal many-body correlations would account for the charge correlations found experimentally. Our results establish 1T-NbSe_{2} as a potential monolayer platform to explore correlated doped Mott physics in a frustrated lattice.
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks