Manyu Zhu, Stanley Chun Ming Wu, Wai-Kit Tam, Chun Kit Wong, Peng Liao, Kathryn S Cheah, Danny Chan, Aaron W James, Victor Y Leung
{"title":"Biglycan fragment modulates TGF-β activity in intervertebral disc via an eIF6-coupled intracellular path.","authors":"Manyu Zhu, Stanley Chun Ming Wu, Wai-Kit Tam, Chun Kit Wong, Peng Liao, Kathryn S Cheah, Danny Chan, Aaron W James, Victor Y Leung","doi":"10.1126/sciadv.adq8545","DOIUrl":null,"url":null,"abstract":"<p><p>Biglycan, a pericellular small leucine-rich proteoglycan, is crucial in skeletal development and regeneration. Intervertebral disc degeneration (IDD) contributes to back pain and disability. Previous studies have shown that biglycan promotes hypoxic survival of disc progenitor cells, while its depletion accelerates IDD. An association of pathological tissue remodeling with a biglycan fragment <sup>344</sup>YWEVQPATFR, termed Bgm1, has been reported, however its role is yet to be defined. Using a custom antibody, we detected Bgm1 in human and mouse nucleus pulposus, with prominent intracellular expression in notochordal cells. Proteomic analysis revealed that Bgm1 interacts with eukaryotic translation initiation factor 6 (eIF6), a key player in ribosome biogenesis. Bgm1 dysregulates eIF6 localization in notochordal cells, affecting nucleocytoplasmic transport. Induced IDD in mice showed elevated nuclear eIF6 expression and reduced Bgm1 in degenerating nucleus pulposus. Transcriptome analysis suggests that Bgm1 regulates fatty acid metabolism and glycolysis in a transforming growth factor-β-dependent manner, highlighting its potential role in metabolic control in spinal joint homeostasis.</p>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 7","pages":"eadq8545"},"PeriodicalIF":11.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11827866/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adq8545","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Biglycan, a pericellular small leucine-rich proteoglycan, is crucial in skeletal development and regeneration. Intervertebral disc degeneration (IDD) contributes to back pain and disability. Previous studies have shown that biglycan promotes hypoxic survival of disc progenitor cells, while its depletion accelerates IDD. An association of pathological tissue remodeling with a biglycan fragment 344YWEVQPATFR, termed Bgm1, has been reported, however its role is yet to be defined. Using a custom antibody, we detected Bgm1 in human and mouse nucleus pulposus, with prominent intracellular expression in notochordal cells. Proteomic analysis revealed that Bgm1 interacts with eukaryotic translation initiation factor 6 (eIF6), a key player in ribosome biogenesis. Bgm1 dysregulates eIF6 localization in notochordal cells, affecting nucleocytoplasmic transport. Induced IDD in mice showed elevated nuclear eIF6 expression and reduced Bgm1 in degenerating nucleus pulposus. Transcriptome analysis suggests that Bgm1 regulates fatty acid metabolism and glycolysis in a transforming growth factor-β-dependent manner, highlighting its potential role in metabolic control in spinal joint homeostasis.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.