Fragmented superconductivity in the Hubbard model as solitons in Ginzburg–Landau theory

IF 5.4 1区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY npj Quantum Materials Pub Date : 2025-02-14 DOI:10.1038/s41535-024-00718-3
Niccolò Baldelli, Hannes Karlsson, Benedikt Kloss, Matthew Fishman, Alexander Wietek
{"title":"Fragmented superconductivity in the Hubbard model as solitons in Ginzburg–Landau theory","authors":"Niccolò Baldelli, Hannes Karlsson, Benedikt Kloss, Matthew Fishman, Alexander Wietek","doi":"10.1038/s41535-024-00718-3","DOIUrl":null,"url":null,"abstract":"<p>The phenomena of superconductivity and charge density waves are observed in close vicinity in many strongly correlated materials. Increasing evidence from experiments and numerical simulations suggests both phenomena can also occur in an intertwined manner, where the superconducting order parameter is coupled to the electronic density. Employing density matrix renormalization group simulations, we investigate the nature of such an intertwined state of matter stabilized in the phase diagram of the elementary <span>\\(t-{t}^{{\\prime} }-U\\)</span> Hubbard model in the strong coupling regime. Remarkably, the condensate of Cooper pairs is shown to be fragmented in the presence of a charge density wave where more than one pairing wave function is macroscopically occupied. Moreover, we provide conclusive evidence that the macroscopic wave functions of the superconducting fragments are well-described by soliton solutions of a Ginzburg-Landau equation in a periodic potential constituted by the charge density wave. In the presence of an orbital magnetic field, the order parameters are gauge invariant, and superconducting vortices are pinned between the stripes. This intertwined Ginzburg-Landau theory is proposed as an effective low-energy description of the stripe fragmented superconductor.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"50 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-024-00718-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The phenomena of superconductivity and charge density waves are observed in close vicinity in many strongly correlated materials. Increasing evidence from experiments and numerical simulations suggests both phenomena can also occur in an intertwined manner, where the superconducting order parameter is coupled to the electronic density. Employing density matrix renormalization group simulations, we investigate the nature of such an intertwined state of matter stabilized in the phase diagram of the elementary \(t-{t}^{{\prime} }-U\) Hubbard model in the strong coupling regime. Remarkably, the condensate of Cooper pairs is shown to be fragmented in the presence of a charge density wave where more than one pairing wave function is macroscopically occupied. Moreover, we provide conclusive evidence that the macroscopic wave functions of the superconducting fragments are well-described by soliton solutions of a Ginzburg-Landau equation in a periodic potential constituted by the charge density wave. In the presence of an orbital magnetic field, the order parameters are gauge invariant, and superconducting vortices are pinned between the stripes. This intertwined Ginzburg-Landau theory is proposed as an effective low-energy description of the stripe fragmented superconductor.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Quantum Materials
npj Quantum Materials Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
10.60
自引率
3.50%
发文量
107
审稿时长
6 weeks
期刊介绍: npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.
期刊最新文献
Magnetic memory and distinct spin populations in ferromagnetic Co3Sn2S2 Fragmented superconductivity in the Hubbard model as solitons in Ginzburg–Landau theory Unprecedentedly large gap in HgBa2Ca2Cu3O8+δ with the highest Tc at ambient pressure Time-domain study of coupled collective excitations in quantum materials Spin-orbit control of antiferromagnetic domains without a Zeeman coupling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1