{"title":"Time-domain study of coupled collective excitations in quantum materials","authors":"Chenhang Xu, Alfred Zong","doi":"10.1038/s41535-025-00726-x","DOIUrl":null,"url":null,"abstract":"<p>Quantum materials hold immense promises for future applications due to their intriguing electronic, magnetic, thermal, and mechanical properties that often arise from a complex interplay between microscopic degrees of freedom. Important insights of such interactions come from studying the collective excitations of electrons, spins, orbitals, and lattice, whose cooperative motions play a crucial role in determining the novel behavior of these systems and offer us a key tuning knob to modify material properties on-demand through external perturbations. In this regard, ultrafast light-matter interaction has shown great potential in controlling the couplings of collective excitations, and rapid progress in a plethora of time-resolved techniques down to the attosecond regime has significantly advanced our understanding of the coupling mechanisms and guided us in manipulating the dynamical properties of quantum materials. This review aims to highlight recent experiments on visualizing collective excitations in the time domain, focusing on the coupling mechanisms between different collective modes such as phonon-phonon, phonon-magnon, phonon-exciton, magnon-magnon, magnon-exciton, and various polaritons. We introduce how these collective modes are excited by an ultrashort laser pulse and probed by different ultrafast techniques, and we explain how the coupling between collective excitations governs the ensuing nonequilibrium dynamics. We also provide some perspectives on future studies that can lead to discoveries of the emergent properties of quantum materials both in and out of equilibrium.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"18 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-025-00726-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum materials hold immense promises for future applications due to their intriguing electronic, magnetic, thermal, and mechanical properties that often arise from a complex interplay between microscopic degrees of freedom. Important insights of such interactions come from studying the collective excitations of electrons, spins, orbitals, and lattice, whose cooperative motions play a crucial role in determining the novel behavior of these systems and offer us a key tuning knob to modify material properties on-demand through external perturbations. In this regard, ultrafast light-matter interaction has shown great potential in controlling the couplings of collective excitations, and rapid progress in a plethora of time-resolved techniques down to the attosecond regime has significantly advanced our understanding of the coupling mechanisms and guided us in manipulating the dynamical properties of quantum materials. This review aims to highlight recent experiments on visualizing collective excitations in the time domain, focusing on the coupling mechanisms between different collective modes such as phonon-phonon, phonon-magnon, phonon-exciton, magnon-magnon, magnon-exciton, and various polaritons. We introduce how these collective modes are excited by an ultrashort laser pulse and probed by different ultrafast techniques, and we explain how the coupling between collective excitations governs the ensuing nonequilibrium dynamics. We also provide some perspectives on future studies that can lead to discoveries of the emergent properties of quantum materials both in and out of equilibrium.
期刊介绍:
npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.