Time-domain study of coupled collective excitations in quantum materials

IF 6.2 1区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY npj Quantum Materials Pub Date : 2025-02-14 DOI:10.1038/s41535-025-00726-x
Chenhang Xu, Alfred Zong
{"title":"Time-domain study of coupled collective excitations in quantum materials","authors":"Chenhang Xu, Alfred Zong","doi":"10.1038/s41535-025-00726-x","DOIUrl":null,"url":null,"abstract":"<p>Quantum materials hold immense promises for future applications due to their intriguing electronic, magnetic, thermal, and mechanical properties that often arise from a complex interplay between microscopic degrees of freedom. Important insights of such interactions come from studying the collective excitations of electrons, spins, orbitals, and lattice, whose cooperative motions play a crucial role in determining the novel behavior of these systems and offer us a key tuning knob to modify material properties on-demand through external perturbations. In this regard, ultrafast light-matter interaction has shown great potential in controlling the couplings of collective excitations, and rapid progress in a plethora of time-resolved techniques down to the attosecond regime has significantly advanced our understanding of the coupling mechanisms and guided us in manipulating the dynamical properties of quantum materials. This review aims to highlight recent experiments on visualizing collective excitations in the time domain, focusing on the coupling mechanisms between different collective modes such as phonon-phonon, phonon-magnon, phonon-exciton, magnon-magnon, magnon-exciton, and various polaritons. We introduce how these collective modes are excited by an ultrashort laser pulse and probed by different ultrafast techniques, and we explain how the coupling between collective excitations governs the ensuing nonequilibrium dynamics. We also provide some perspectives on future studies that can lead to discoveries of the emergent properties of quantum materials both in and out of equilibrium.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"18 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-025-00726-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum materials hold immense promises for future applications due to their intriguing electronic, magnetic, thermal, and mechanical properties that often arise from a complex interplay between microscopic degrees of freedom. Important insights of such interactions come from studying the collective excitations of electrons, spins, orbitals, and lattice, whose cooperative motions play a crucial role in determining the novel behavior of these systems and offer us a key tuning knob to modify material properties on-demand through external perturbations. In this regard, ultrafast light-matter interaction has shown great potential in controlling the couplings of collective excitations, and rapid progress in a plethora of time-resolved techniques down to the attosecond regime has significantly advanced our understanding of the coupling mechanisms and guided us in manipulating the dynamical properties of quantum materials. This review aims to highlight recent experiments on visualizing collective excitations in the time domain, focusing on the coupling mechanisms between different collective modes such as phonon-phonon, phonon-magnon, phonon-exciton, magnon-magnon, magnon-exciton, and various polaritons. We introduce how these collective modes are excited by an ultrashort laser pulse and probed by different ultrafast techniques, and we explain how the coupling between collective excitations governs the ensuing nonequilibrium dynamics. We also provide some perspectives on future studies that can lead to discoveries of the emergent properties of quantum materials both in and out of equilibrium.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量子材料中耦合集体激发的时域研究
量子材料在未来的应用中有着巨大的前景,因为它们具有有趣的电子、磁性、热和机械特性,这些特性通常是由微观自由度之间的复杂相互作用产生的。这种相互作用的重要见解来自于研究电子、自旋、轨道和晶格的集体激发,它们的协同运动在决定这些系统的新行为方面起着至关重要的作用,并为我们提供了一个关键的调谐旋钮,可以通过外部扰动按需修改材料特性。在这方面,超快光-物质相互作用在控制集体激发的耦合方面显示出巨大的潜力,并且大量时间分辨技术的快速进展可以达到阿秒级,这大大提高了我们对耦合机制的理解,并指导我们操纵量子材料的动力学性质。本文综述了近年来在时域上可视化集体激发的实验,重点介绍了不同集体模式(声子-声子、声子-磁子、声子-激子、磁子-磁子、磁子-激子和各种极化子)之间的耦合机制。我们介绍了这些集体模式如何被超短激光脉冲激发,并通过不同的超快技术探测,我们解释了集体激发之间的耦合如何控制随后的非平衡动力学。我们还提供了一些关于未来研究的观点,这些研究可以导致发现量子材料在平衡和非平衡状态下的涌现特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Quantum Materials
npj Quantum Materials Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
10.60
自引率
3.50%
发文量
107
审稿时长
6 weeks
期刊介绍: npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.
期刊最新文献
Magnetization orientation-dependent Shubnikov-de Haas oscillations in ferromagnetic Weyl semimetal Co3Sn2S2 Surface wet-etched Y3Fe5O12 films with perpendicular magnetic anisotropy for ultrahigh density spintronic device applications Manipulating the long-range strong photon-magnon coupling via a saturable gain Control of intervalley scattering in Bi2Te3 via temperature-dependent band renormalization Symmetry-engineered chiral magnetotransport in the correlated oxide SrNbO3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1