Siqi Zhou, Haiyan Wen, Xiongwei He, Xiaotao Han, Haohuan Li
{"title":"Pulsed electromagnetic field ameliorates the progression of osteoarthritis via the Sirt1/NF-κB pathway","authors":"Siqi Zhou, Haiyan Wen, Xiongwei He, Xiaotao Han, Haohuan Li","doi":"10.1186/s13075-025-03492-0","DOIUrl":null,"url":null,"abstract":"Pulsed electromagnetic field (PEMF) is a non-invasive treatment that utilizes electromagnetic fields to reduce inflammation and promote tissue repair. However, PEMFs’ anti-inflammatory effect on osteoarthritis (OA) and the potential mechanism has not been fully elucidated. Human chondrocytes (C28/I2) were stimulated with interleukin (IL)-1β with or without the treatment of PEMF. CCK-8 assay Kit was used to detect cell viability. RT-qPCR, ELISA, immunofluorescent staining and western blot was used to analyze relative markers of inflammatory response and extracellular matrix (ECM) under the treatment of PEMF and related mechanism. Besides, the significance role of Sirt1 was assessed by using the Sirt1 inhibitor (EX-527). Moreover, immunohistochemistry and immunofluorescence staining were carried out to evaluate the curative effect of PEMF on OA mice induced by the destabilization of the medial meniscus (DMM). PEMF inhibited IL-1β-mediated the expression of pro-inflammatory factors. Besides, PEMF alleviated IL-1β-induced degradation of ECM by increasing the expression of Col2a1 and ACAN, while inhibiting the expression of MMP13 and ADAMTS5. At the mechanism level, PEMF increased the expression of Sirt1 and inhibited IL-1β-induced the activation of NF-κB pathway. Furthermore, blocking Sirt1 with EX-527 attenuated the effect of PEMF on the inhibition of NF-κB pathway and the expression of ECM in IL-1β-induced chondrocytes. In vivo, PEMF-treated OA mice showed low modified mankin scores, reduced the number of osteophytes and preserved joint structure. Our results suggest that PEMF inhibits NF-κB pathway and blocks the expression of inflammatory factors by activating the expression of Sirt1, which may be a novel strategy for OA.","PeriodicalId":8419,"journal":{"name":"Arthritis Research & Therapy","volume":"30 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arthritis Research & Therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13075-025-03492-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Pulsed electromagnetic field (PEMF) is a non-invasive treatment that utilizes electromagnetic fields to reduce inflammation and promote tissue repair. However, PEMFs’ anti-inflammatory effect on osteoarthritis (OA) and the potential mechanism has not been fully elucidated. Human chondrocytes (C28/I2) were stimulated with interleukin (IL)-1β with or without the treatment of PEMF. CCK-8 assay Kit was used to detect cell viability. RT-qPCR, ELISA, immunofluorescent staining and western blot was used to analyze relative markers of inflammatory response and extracellular matrix (ECM) under the treatment of PEMF and related mechanism. Besides, the significance role of Sirt1 was assessed by using the Sirt1 inhibitor (EX-527). Moreover, immunohistochemistry and immunofluorescence staining were carried out to evaluate the curative effect of PEMF on OA mice induced by the destabilization of the medial meniscus (DMM). PEMF inhibited IL-1β-mediated the expression of pro-inflammatory factors. Besides, PEMF alleviated IL-1β-induced degradation of ECM by increasing the expression of Col2a1 and ACAN, while inhibiting the expression of MMP13 and ADAMTS5. At the mechanism level, PEMF increased the expression of Sirt1 and inhibited IL-1β-induced the activation of NF-κB pathway. Furthermore, blocking Sirt1 with EX-527 attenuated the effect of PEMF on the inhibition of NF-κB pathway and the expression of ECM in IL-1β-induced chondrocytes. In vivo, PEMF-treated OA mice showed low modified mankin scores, reduced the number of osteophytes and preserved joint structure. Our results suggest that PEMF inhibits NF-κB pathway and blocks the expression of inflammatory factors by activating the expression of Sirt1, which may be a novel strategy for OA.
期刊介绍:
Established in 1999, Arthritis Research and Therapy is an international, open access, peer-reviewed journal, publishing original articles in the area of musculoskeletal research and therapy as well as, reviews, commentaries and reports. A major focus of the journal is on the immunologic processes leading to inflammation, damage and repair as they relate to autoimmune rheumatic and musculoskeletal conditions, and which inform the translation of this knowledge into advances in clinical care. Original basic, translational and clinical research is considered for publication along with results of early and late phase therapeutic trials, especially as they pertain to the underpinning science that informs clinical observations in interventional studies.