Zhongyou Lu, Kun Xu, Kai Xiao, Qibin Xu, Li Wang, Peng Li, Jinhao Zhou, Dan Zhao, Libing Bai, Yuhua Cheng, Wei Huang
{"title":"Biomolecule sensors based on organic electrochemical transistors","authors":"Zhongyou Lu, Kun Xu, Kai Xiao, Qibin Xu, Li Wang, Peng Li, Jinhao Zhou, Dan Zhao, Libing Bai, Yuhua Cheng, Wei Huang","doi":"10.1038/s41528-025-00383-x","DOIUrl":null,"url":null,"abstract":"<p>Biosensors based on organic electrochemical transistors (OECTs) have been a research highlight in recent years owing to their remarkable biocompatibility, low operating voltage, and substantial signal amplification capability. Especially, as an emerging fundamental device for biosensing, OECTs show great potential for pH, ions, molecules, and biomarker sensing. This review highlights the research progress of biomolecule sensors based on OECTs, focusing on recent publications in the past 5 years. Specifically, OECT-based biomolecule sensors for small molecules (glucose, dopamine, lactate, etc. that act as signals or effectors), and macromolecules (DNA, RNA, proteins, etc. that are often used as markers in physiology and medicine), are summarized. Additionally, emerging technologies and materials used to enhance sensitivity, detection limits, and detection ranges are described comprehensively. Last, aspects of OECT-based biomolecule sensors that need further improvement are discussed along with future opportunities and challenges.</p>","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":"67 1","pages":""},"PeriodicalIF":12.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41528-025-00383-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Biosensors based on organic electrochemical transistors (OECTs) have been a research highlight in recent years owing to their remarkable biocompatibility, low operating voltage, and substantial signal amplification capability. Especially, as an emerging fundamental device for biosensing, OECTs show great potential for pH, ions, molecules, and biomarker sensing. This review highlights the research progress of biomolecule sensors based on OECTs, focusing on recent publications in the past 5 years. Specifically, OECT-based biomolecule sensors for small molecules (glucose, dopamine, lactate, etc. that act as signals or effectors), and macromolecules (DNA, RNA, proteins, etc. that are often used as markers in physiology and medicine), are summarized. Additionally, emerging technologies and materials used to enhance sensitivity, detection limits, and detection ranges are described comprehensively. Last, aspects of OECT-based biomolecule sensors that need further improvement are discussed along with future opportunities and challenges.
期刊介绍:
npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.