The Negative Legacy Effect of Extreme Drought on Soil Respiration Is Unaffected by Post-Drought Precipitation Regime in a Temperate Grassland

IF 10.8 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION Global Change Biology Pub Date : 2025-02-14 DOI:10.1111/gcb.70083
Eszter Lellei-Kovács, Zoltán Botta-Dukát, Gábor Ónodi, Andrea Mojzes, György Kröel-Dulay
{"title":"The Negative Legacy Effect of Extreme Drought on Soil Respiration Is Unaffected by Post-Drought Precipitation Regime in a Temperate Grassland","authors":"Eszter Lellei-Kovács,&nbsp;Zoltán Botta-Dukát,&nbsp;Gábor Ónodi,&nbsp;Andrea Mojzes,&nbsp;György Kröel-Dulay","doi":"10.1111/gcb.70083","DOIUrl":null,"url":null,"abstract":"<p>Soil respiration, the main ecosystem process that produces carbon dioxide into the atmosphere, is sensitive to extreme climatic events. The immediate, usually negative effect of droughts on soil respiration has often been observed, but the recovery of soil respiration following drought is rarely documented. Soil respiration can be reduced beyond the drought year if drought-induced changes suppress soil activity. Alternatively, reduction in soil respiration may be overcompensated in the subsequent years due to increased substrate input and soil moisture, resulting from plant dieback during drought. In addition, post-drought weather patterns may also affect the recovery of soil respiration. In a full-factorial grassland experiment, we combined an extreme (5 months) summer drought in 2014 with four levels of post-drought precipitation regimes, including severe (2 months) droughts, moderate (1 month) droughts, ambient weather, and water addition (four large rain events) in summers of 2015 and 2016. We measured soil respiration monthly between May and November, from 2013 to 2016. The extreme drought had an immediate strong negative effect, decreasing soil respiration by 50.8% in 2014 compared to the control plots, and it had a negative legacy effect in 2015 (14.5% reduction), but not in 2016. This legacy effect was unaffected by the post-drought precipitation regime. Moderate drought decreased soil respiration by 12.1% and 18.6%, while severe drought decreased soil respiration by 18.3% and 27.3% in 2015 and 2016, respectively, while water addition had no effect. Since soil water content in extreme drought plots recovered by 2015, we hypothesize that changes in soil biota and reduced root activity are responsible for extreme drought's long-term negative effects. Overall, our results highlight that extreme droughts may have negative effects on soil respiration well beyond the event, and thus the full effect on carbon cycling may be much larger than what is estimated solely based on the immediate effects.</p>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 2","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcb.70083","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70083","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

Soil respiration, the main ecosystem process that produces carbon dioxide into the atmosphere, is sensitive to extreme climatic events. The immediate, usually negative effect of droughts on soil respiration has often been observed, but the recovery of soil respiration following drought is rarely documented. Soil respiration can be reduced beyond the drought year if drought-induced changes suppress soil activity. Alternatively, reduction in soil respiration may be overcompensated in the subsequent years due to increased substrate input and soil moisture, resulting from plant dieback during drought. In addition, post-drought weather patterns may also affect the recovery of soil respiration. In a full-factorial grassland experiment, we combined an extreme (5 months) summer drought in 2014 with four levels of post-drought precipitation regimes, including severe (2 months) droughts, moderate (1 month) droughts, ambient weather, and water addition (four large rain events) in summers of 2015 and 2016. We measured soil respiration monthly between May and November, from 2013 to 2016. The extreme drought had an immediate strong negative effect, decreasing soil respiration by 50.8% in 2014 compared to the control plots, and it had a negative legacy effect in 2015 (14.5% reduction), but not in 2016. This legacy effect was unaffected by the post-drought precipitation regime. Moderate drought decreased soil respiration by 12.1% and 18.6%, while severe drought decreased soil respiration by 18.3% and 27.3% in 2015 and 2016, respectively, while water addition had no effect. Since soil water content in extreme drought plots recovered by 2015, we hypothesize that changes in soil biota and reduced root activity are responsible for extreme drought's long-term negative effects. Overall, our results highlight that extreme droughts may have negative effects on soil respiration well beyond the event, and thus the full effect on carbon cycling may be much larger than what is estimated solely based on the immediate effects.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Global Change Biology
Global Change Biology 环境科学-环境科学
CiteScore
21.50
自引率
5.20%
发文量
497
审稿时长
3.3 months
期刊介绍: Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health. Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.
期刊最新文献
Impact of Carbon and Nitrogen Assimilation in Sargassum fusiforme (Harvey) Setchell due to Marine Heatwave Under Global Warming Pressure on Global Forests: Implications of Rising Vegetable Oils Consumption Under the EAT-Lancet Diet Ecological Differentiation Among Nitrous Oxide Reducers Enhances Temperature Effects on Riverine N2O Emissions Potential Spatial Mismatches Between Marine Predators and Their Prey in the Southern Hemisphere in Response to Climate Change Continent-Wide Patterns of Climate and Mast Seeding Entrain Boreal Bird Irruptions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1