Bovine milk-derived extracellular vesicles reduce oxidative stress and ferroptosis induced by Klebsiella pneumoniae in bovine mammary epithelial cells

IF 7 1区 农林科学 Q1 Agricultural and Biological Sciences Journal of Animal Science and Biotechnology Pub Date : 2025-02-14 DOI:10.1186/s40104-025-01151-7
Bingchun Liang, Yindi Xiong, Eduardo R. Cobo, John Kastelic, Xiaofang Tong, Bo Han, Jian Gao
{"title":"Bovine milk-derived extracellular vesicles reduce oxidative stress and ferroptosis induced by Klebsiella pneumoniae in bovine mammary epithelial cells","authors":"Bingchun Liang, Yindi Xiong, Eduardo R. Cobo, John Kastelic, Xiaofang Tong, Bo Han, Jian Gao","doi":"10.1186/s40104-025-01151-7","DOIUrl":null,"url":null,"abstract":"Ferroptosis is characterized by increased production of reactive oxygen species (ROS) and membrane lipid peroxidation that can exacerbate inflammatory damage. Extracellular vesicles (EVs) isolated from bovine milk have many biological functions, including antioxidant properties. However, the role of EVs on Klebsiella pneumoniae-induced ferroptosis and oxidative stress in bovine mammary epithelial cells (bMECs) and murine mammary tissue is unclear. In this study, EVs were isolated from bovine colostrum, mature milk and clinical mastitis milk (defined as C-EVs, M-EVs and CM-EVs, respectively) and assessed by transmission electron microscopy, Western blot and transcriptome sequencing. Effects of EVs on K. pneumoniae-induced ferroptosis and oxidative stress in bMECs were evaluated with immunofluorescence and Western blot. In bMECs, infection with K. pneumoniae induced oxidative stress, decreasing protein expression of Nrf2, Keap1 and HO-1 plus SOD activity, and increasing ROS concentrations. However, protein expression of GPX4, ACSL4 and S100A4 in bMECs, all factors that regulate ferroptosis, was downregulated by K. pneumoniae. Furthermore, this bacterium compromised tight junctions in murine mammary tissue, with low expression of ZO-1 and Occludin, whereas protein expression of Nrf2 and GPX4 was also decreased in mammary tissue. Adding C-EVs, M-EVs or CM-EVs reduced oxidative stress and ferroptosis in K. pneumoniae-infected bMECs in vitro and murine mammary tissues in vivo. In conclusion, all 3 sources of milk-derived EVs alleviated oxidative stress and ferroptosis in K. pneumoniae-infected bMECs and mammary tissues.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"30 1","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Science and Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s40104-025-01151-7","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Ferroptosis is characterized by increased production of reactive oxygen species (ROS) and membrane lipid peroxidation that can exacerbate inflammatory damage. Extracellular vesicles (EVs) isolated from bovine milk have many biological functions, including antioxidant properties. However, the role of EVs on Klebsiella pneumoniae-induced ferroptosis and oxidative stress in bovine mammary epithelial cells (bMECs) and murine mammary tissue is unclear. In this study, EVs were isolated from bovine colostrum, mature milk and clinical mastitis milk (defined as C-EVs, M-EVs and CM-EVs, respectively) and assessed by transmission electron microscopy, Western blot and transcriptome sequencing. Effects of EVs on K. pneumoniae-induced ferroptosis and oxidative stress in bMECs were evaluated with immunofluorescence and Western blot. In bMECs, infection with K. pneumoniae induced oxidative stress, decreasing protein expression of Nrf2, Keap1 and HO-1 plus SOD activity, and increasing ROS concentrations. However, protein expression of GPX4, ACSL4 and S100A4 in bMECs, all factors that regulate ferroptosis, was downregulated by K. pneumoniae. Furthermore, this bacterium compromised tight junctions in murine mammary tissue, with low expression of ZO-1 and Occludin, whereas protein expression of Nrf2 and GPX4 was also decreased in mammary tissue. Adding C-EVs, M-EVs or CM-EVs reduced oxidative stress and ferroptosis in K. pneumoniae-infected bMECs in vitro and murine mammary tissues in vivo. In conclusion, all 3 sources of milk-derived EVs alleviated oxidative stress and ferroptosis in K. pneumoniae-infected bMECs and mammary tissues.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Animal Science and Biotechnology
Journal of Animal Science and Biotechnology AGRICULTURE, DAIRY & ANIMAL SCIENCE-
CiteScore
9.90
自引率
2.90%
发文量
822
审稿时长
17 weeks
期刊介绍: Journal of Animal Science and Biotechnology is an open access, peer-reviewed journal that encompasses all aspects of animal science and biotechnology. That includes domestic animal production, animal genetics and breeding, animal reproduction and physiology, animal nutrition and biochemistry, feed processing technology and bioevaluation, animal biotechnology, and meat science.
期刊最新文献
Comparative effects of selenium-enriched lactobacilli and selenium-enriched yeast on performance, egg selenium enrichment, antioxidant capacity, and ileal microbiota in laying hens Ferroptosis emerges as the predominant form of regulated cell death in goat sperm cryopreservation Correction: Dietary silymarin improves performance by altering hepatic lipid metabolism and cecal microbiota function and its metabolites in late laying hens Bovine milk-derived extracellular vesicles reduce oxidative stress and ferroptosis induced by Klebsiella pneumoniae in bovine mammary epithelial cells Single-nucleus transcriptomes reveal the underlying mechanisms of dynamic whitening in thermogenic adipose tissue in goats
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1