Wataru Kobayashi, Takuma Otsuka, Yuki K. Wakabayashi, Gensai Tei
{"title":"Physics-informed Bayesian optimization suitable for extrapolation of materials growth","authors":"Wataru Kobayashi, Takuma Otsuka, Yuki K. Wakabayashi, Gensai Tei","doi":"10.1038/s41524-025-01522-8","DOIUrl":null,"url":null,"abstract":"<p>This paper describes a novel physics-informed Bayesian optimization approach that leverages prior physics knowledge, specifically Vegard’s law and the linear relationship between gas flow rate and composition in compound semiconductors. The methodology was applied to metal-organic chemical vapor deposition for III–V semiconductor growth. It resulted in the successful synthesis of III–V semiconductors with tailored band gap wavelengths and lattice constants in the region of growth conditions not included in the training data. Furthermore, it predicted hidden trends that Ga composition would be smaller than In composition in As-rich growth regions. This trend is not described by prior physics, demonstrating that statistical machine learning is effective not only for optimization but also for gaining a physical understanding of crystal growth mechanisms. The study demonstrates the potential to develop extrapolable machine learning models by integrating robust physics knowledge, which significantly enhances the efficiency of high-throughput and autonomous material synthesis.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"63 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01522-8","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper describes a novel physics-informed Bayesian optimization approach that leverages prior physics knowledge, specifically Vegard’s law and the linear relationship between gas flow rate and composition in compound semiconductors. The methodology was applied to metal-organic chemical vapor deposition for III–V semiconductor growth. It resulted in the successful synthesis of III–V semiconductors with tailored band gap wavelengths and lattice constants in the region of growth conditions not included in the training data. Furthermore, it predicted hidden trends that Ga composition would be smaller than In composition in As-rich growth regions. This trend is not described by prior physics, demonstrating that statistical machine learning is effective not only for optimization but also for gaining a physical understanding of crystal growth mechanisms. The study demonstrates the potential to develop extrapolable machine learning models by integrating robust physics knowledge, which significantly enhances the efficiency of high-throughput and autonomous material synthesis.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.