Inverse design of photonic surfaces via multi fidelity ensemble framework and femtosecond laser processing

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL npj Computational Materials Pub Date : 2025-02-15 DOI:10.1038/s41524-025-01518-4
Luka Grbčić, Minok Park, Mahmoud Elzouka, Ravi Prasher, Juliane Müller, Costas P. Grigoropoulos, Sean D. Lubner, Vassilia Zorba, Wibe Albert de Jong
{"title":"Inverse design of photonic surfaces via multi fidelity ensemble framework and femtosecond laser processing","authors":"Luka Grbčić, Minok Park, Mahmoud Elzouka, Ravi Prasher, Juliane Müller, Costas P. Grigoropoulos, Sean D. Lubner, Vassilia Zorba, Wibe Albert de Jong","doi":"10.1038/s41524-025-01518-4","DOIUrl":null,"url":null,"abstract":"<p>We demonstrate a multi-fidelity (MF) machine learning ensemble framework for the inverse design of photonic surfaces, trained on a dataset of 11,759 samples that we fabricate using high throughput femtosecond laser processing. The MF ensemble combines an initial low fidelity model for generating design solutions, with a high fidelity model that refines these solutions through local optimization. The combined MF ensemble can generate multiple disparate sets of laser-processing parameters that can each produce the same target input spectral emissivity with high accuracy (root mean squared errors &lt; 2%). SHapley Additive exPlanations analysis shows transparent model interpretability of the complex relationship between laser parameters and spectral emissivity. Finally, the MF ensemble is experimentally validated by fabricating and evaluating photonic surface designs that it generates for improved efficiency energy harvesting devices. Our approach provides a powerful tool for advancing the inverse design of photonic surfaces in energy harvesting applications.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"15 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01518-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We demonstrate a multi-fidelity (MF) machine learning ensemble framework for the inverse design of photonic surfaces, trained on a dataset of 11,759 samples that we fabricate using high throughput femtosecond laser processing. The MF ensemble combines an initial low fidelity model for generating design solutions, with a high fidelity model that refines these solutions through local optimization. The combined MF ensemble can generate multiple disparate sets of laser-processing parameters that can each produce the same target input spectral emissivity with high accuracy (root mean squared errors < 2%). SHapley Additive exPlanations analysis shows transparent model interpretability of the complex relationship between laser parameters and spectral emissivity. Finally, the MF ensemble is experimentally validated by fabricating and evaluating photonic surface designs that it generates for improved efficiency energy harvesting devices. Our approach provides a powerful tool for advancing the inverse design of photonic surfaces in energy harvesting applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
我们展示了一种用于光子表面逆向设计的多保真度(MF)机器学习集合框架,该框架是在我们使用高通量飞秒激光加工制造的 11,759 个样本的数据集上进行训练的。MF 组合结合了用于生成设计方案的初始低保真模型和通过局部优化完善这些方案的高保真模型。组合式 MF 组合可生成多套不同的激光加工参数,每套参数都能以高精度(均方根误差为 2%)生成相同的目标输入光谱发射率。SHapley Additive exPlanations 分析表明,激光参数与光谱发射率之间的复杂关系具有透明的模型可解释性。最后,通过制造和评估光子表面设计,对 MF 组合进行了实验验证,该设计可用于提高效率的能量收集装置。我们的方法为推进能量收集应用中光子表面的逆向设计提供了强有力的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
期刊最新文献
Soliquidy: a descriptor for atomic geometrical confusion Elucidation of molecular-level charge transport in an organic amorphous system Direct calculation of effective mobile ion concentration in lithium superionic conductors Quadruple-well ferroelectricity and moderate switching barrier in defective wurtzite α-Al2S3: a first-principles study Unraveling the origins of ferroelectricity in doped hafnia through carrier-mediated phase transitions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1