Ozone oxidation of actual waste leachate coupled with culture of microalgae for efficient lipid production under different temperatures

IF 11.4 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Water Research Pub Date : 2025-02-16 DOI:10.1016/j.watres.2025.123305
Qingqing Song, Fanying Kong, Bing-Feng Liu, Xueting Song, Nan-Qi Ren, Hong-Yu Ren
{"title":"Ozone oxidation of actual waste leachate coupled with culture of microalgae for efficient lipid production under different temperatures","authors":"Qingqing Song, Fanying Kong, Bing-Feng Liu, Xueting Song, Nan-Qi Ren, Hong-Yu Ren","doi":"10.1016/j.watres.2025.123305","DOIUrl":null,"url":null,"abstract":"The production of waste leachate (WL) has been increasing annually with the growth of population and the improvement of living standards, but it has become a difficult task to treat and resource it. Furthermore, the shortage of energy is becoming more serious, so the development of renewable energy instead of expensive fossil fuels is especially essential for productive life. This study constructed a system to oxidize WL by ozone at different temperatures and used it as a culture substrate for microalgae to produce biodiesel. It was shown that the biomass and lipid content of microalgae reached 420 ± 43.59 mg/L and 41 ± 2.2% at a low temperature of 15 °C, respectively. Compared with the reaction system at 5 °C, the oxidation of WL by ozone at 25-45 °C was more effective in removing ammonia nitrogen, total phosphorus, and chromaticity. Three-dimension excitation emission matrix (3D-EEM) fluorescence spectroscopy results showed that the fluorescence intensity of dissolved organic matter in WL was reduced by 59.4%-67.7% after the ozone oxidation, which improved the bioavailability of WL and laid a nutrient foundation for the growth of microalgae. At 45 °C, 72.7% of the chromaticity of WL was removed by ozone oxidation alone, and the ozone-coupled microalgae treatment system reduced ammonia nitrogen from 416.25 ± 1.05 to 214.6 ± 7.99 mg/L in WL. In addition, microalgae regulated the antioxidant system to mitigate oxidative damage induced by high concentrations of reactive oxygen species (ROS) caused by extreme temperatures by adjusting the levels of superoxide dismutase (SOD), catalase (CAT) and reduced glutathione (GSH). The lipids of microalgae cultured in WL were dominated by saturated and unsaturated fatty acids, and the saturated fatty acids content of lipids reached 60.8% at 15 °C, which was favorable for the production of biodiesel with better lubricating and combustion properties. This study provides a valuable theoretical basis for the resource utilization of WL and the practical production of microalgae biodiesel in cold regions.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"3 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2025.123305","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The production of waste leachate (WL) has been increasing annually with the growth of population and the improvement of living standards, but it has become a difficult task to treat and resource it. Furthermore, the shortage of energy is becoming more serious, so the development of renewable energy instead of expensive fossil fuels is especially essential for productive life. This study constructed a system to oxidize WL by ozone at different temperatures and used it as a culture substrate for microalgae to produce biodiesel. It was shown that the biomass and lipid content of microalgae reached 420 ± 43.59 mg/L and 41 ± 2.2% at a low temperature of 15 °C, respectively. Compared with the reaction system at 5 °C, the oxidation of WL by ozone at 25-45 °C was more effective in removing ammonia nitrogen, total phosphorus, and chromaticity. Three-dimension excitation emission matrix (3D-EEM) fluorescence spectroscopy results showed that the fluorescence intensity of dissolved organic matter in WL was reduced by 59.4%-67.7% after the ozone oxidation, which improved the bioavailability of WL and laid a nutrient foundation for the growth of microalgae. At 45 °C, 72.7% of the chromaticity of WL was removed by ozone oxidation alone, and the ozone-coupled microalgae treatment system reduced ammonia nitrogen from 416.25 ± 1.05 to 214.6 ± 7.99 mg/L in WL. In addition, microalgae regulated the antioxidant system to mitigate oxidative damage induced by high concentrations of reactive oxygen species (ROS) caused by extreme temperatures by adjusting the levels of superoxide dismutase (SOD), catalase (CAT) and reduced glutathione (GSH). The lipids of microalgae cultured in WL were dominated by saturated and unsaturated fatty acids, and the saturated fatty acids content of lipids reached 60.8% at 15 °C, which was favorable for the production of biodiesel with better lubricating and combustion properties. This study provides a valuable theoretical basis for the resource utilization of WL and the practical production of microalgae biodiesel in cold regions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Water Research
Water Research 环境科学-工程:环境
CiteScore
20.80
自引率
9.40%
发文量
1307
审稿时长
38 days
期刊介绍: Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include: •Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management; •Urban hydrology including sewer systems, stormwater management, and green infrastructure; •Drinking water treatment and distribution; •Potable and non-potable water reuse; •Sanitation, public health, and risk assessment; •Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions; •Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment; •Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution; •Environmental restoration, linked to surface water, groundwater and groundwater remediation; •Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts; •Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle; •Socio-economic, policy, and regulations studies.
期刊最新文献
Assessing Selenium Fate and Transport in a Semi-Arid River Basin with and without Human Influence Spatiotemporal profiling and succession of microbial communities in landfills based on a cross-kingdom abundance quantification method Natural Mackinawite-based Elimination of Vanadium and Ammonium from Wastewater in Autotrophic Biosystem Declining particulate organic carbon flux to estuary yet rising oceanic flux over the past 20 years: a case study of the Pearl River Estuary Insight into homogeneous activation of sodium hypochlorite by dithionite coupled with dissolved oxygen (DO@NaClO/DTN) for carbamazepine degradation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1