Haoqin Ma , Guorui Kong , Chen Chen , Zizhang Guo , Juan Huang , Shaoping Kuang , Jian Zhang , Yan Kang
{"title":"Enhanced removal of perfluorooctanoic acid and perfluorooctane sulphonic acid by direct current in iron-based constructed wetlands","authors":"Haoqin Ma , Guorui Kong , Chen Chen , Zizhang Guo , Juan Huang , Shaoping Kuang , Jian Zhang , Yan Kang","doi":"10.1016/j.watres.2025.123302","DOIUrl":null,"url":null,"abstract":"<div><div>Iron minerals have been used for the treatment of PFOA and PFOS in constructed wetlands (CWs). Electron transfer that mediated by iron cycling is the primary mechanism for the removal of PFOA and PFOS. To further improve the electron transfer and enhance treatment efficiency of PFOA and PFOS, direct current with different voltages was applied in iron-based CWs. The results show that PFOA and PFOS removal efficiencies reached 63.2 ± 2.3 % and 57.5 ± 2.2 % at the voltage of 0.3 V, and further improved by 2.7 % and 3.5 % after the voltage increased to 0.8 V. The Cyt C that involved in electron transfer was increased to 174.9 ± 5.2 nmol/L in the cathode of voltage-added CWs. The contents of fulvic-like acids (18.2 %) and humic-like acids (9.5 %) materials that contribute to electron transfer were also 4.1 % and 2.6 % higher than that without direct current. The abundance of <em>Geobacter</em> that involved in electron transfer, PFOA and PFOS removal, was highly enriched in the application of direct current. Moreover, microbial pathways associated with PFOA and PFOS removal such as carbohydrate metabolism (sucrose metabolism), energy metabolism (oxidative phosphorylation), and membrane transfer (bacterial secretion system) were up-regulated. In general, the application of direct current showed excellent removal performance of PFAS through the enhanced electron transfer in iron minerals-based CWs.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"277 ","pages":"Article 123302"},"PeriodicalIF":11.4000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135425002167","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Iron minerals have been used for the treatment of PFOA and PFOS in constructed wetlands (CWs). Electron transfer that mediated by iron cycling is the primary mechanism for the removal of PFOA and PFOS. To further improve the electron transfer and enhance treatment efficiency of PFOA and PFOS, direct current with different voltages was applied in iron-based CWs. The results show that PFOA and PFOS removal efficiencies reached 63.2 ± 2.3 % and 57.5 ± 2.2 % at the voltage of 0.3 V, and further improved by 2.7 % and 3.5 % after the voltage increased to 0.8 V. The Cyt C that involved in electron transfer was increased to 174.9 ± 5.2 nmol/L in the cathode of voltage-added CWs. The contents of fulvic-like acids (18.2 %) and humic-like acids (9.5 %) materials that contribute to electron transfer were also 4.1 % and 2.6 % higher than that without direct current. The abundance of Geobacter that involved in electron transfer, PFOA and PFOS removal, was highly enriched in the application of direct current. Moreover, microbial pathways associated with PFOA and PFOS removal such as carbohydrate metabolism (sucrose metabolism), energy metabolism (oxidative phosphorylation), and membrane transfer (bacterial secretion system) were up-regulated. In general, the application of direct current showed excellent removal performance of PFAS through the enhanced electron transfer in iron minerals-based CWs.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.