Modulating d-Orbital Electronic Configuration of Magnetic Iron Sulfide Nanocrystals for Maximized Treatment Efficiency of Chromium-Contaminated Water

IF 11.4 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Water Research Pub Date : 2025-03-10 DOI:10.1016/j.watres.2025.123477
Yaqi Liu, Can Liu, Xiaofan Peng, Zongsheng Liang, Shengli Hou, Wei Chen, Tong Zhang
{"title":"Modulating d-Orbital Electronic Configuration of Magnetic Iron Sulfide Nanocrystals for Maximized Treatment Efficiency of Chromium-Contaminated Water","authors":"Yaqi Liu, Can Liu, Xiaofan Peng, Zongsheng Liang, Shengli Hou, Wei Chen, Tong Zhang","doi":"10.1016/j.watres.2025.123477","DOIUrl":null,"url":null,"abstract":"Hexavalent chromium (Cr(VI)) is one of the most rigorously regulated contaminants frequently detected in surface and ground water. Magnetic iron sulfides are naturally abundant, environmentally friendly materials ideal for the removal of Cr(VI) from contaminated water, but the high-spin states of Fe(III) ions limits their adsorption affinity. Herein, we develop a heteroatom-doping approach to boost the Cr(VI) removal efficacy of greigite. Compared to pristine greigite, cobalt doping significantly enhances the capability of greigite to adsorption Cr(VI) by decreasing electron occupancy in the <em>e<sub>g</sub></em> orbitals and reducing the spin state of Fe ions. With a combination of electrochemical characterizations and theoretical calculations, we confirm that cobalt doping significantly enhances its reduction capacity toward Cr(VI) by elevating the <em>d-</em>band center and increasing electron transfer rate. We corroborate the finding by showing that Cu-doping, which has the opposite effects on <em>d</em>-orbital electron configures, compromises the efficacy of greigite. Of note, the magnetic properties of greigite remain largely unaffected upon heteroatom doping, allowing easy separation and recovery of the materials from the aqueous solutions. This work provides valuable mechanistic insights for nanomaterial design in contaminant removal and may inform the development of nanotechnology for green remediation of contaminated sites.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"21 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2025.123477","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hexavalent chromium (Cr(VI)) is one of the most rigorously regulated contaminants frequently detected in surface and ground water. Magnetic iron sulfides are naturally abundant, environmentally friendly materials ideal for the removal of Cr(VI) from contaminated water, but the high-spin states of Fe(III) ions limits their adsorption affinity. Herein, we develop a heteroatom-doping approach to boost the Cr(VI) removal efficacy of greigite. Compared to pristine greigite, cobalt doping significantly enhances the capability of greigite to adsorption Cr(VI) by decreasing electron occupancy in the eg orbitals and reducing the spin state of Fe ions. With a combination of electrochemical characterizations and theoretical calculations, we confirm that cobalt doping significantly enhances its reduction capacity toward Cr(VI) by elevating the d-band center and increasing electron transfer rate. We corroborate the finding by showing that Cu-doping, which has the opposite effects on d-orbital electron configures, compromises the efficacy of greigite. Of note, the magnetic properties of greigite remain largely unaffected upon heteroatom doping, allowing easy separation and recovery of the materials from the aqueous solutions. This work provides valuable mechanistic insights for nanomaterial design in contaminant removal and may inform the development of nanotechnology for green remediation of contaminated sites.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Water Research
Water Research 环境科学-工程:环境
CiteScore
20.80
自引率
9.40%
发文量
1307
审稿时长
38 days
期刊介绍: Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include: •Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management; •Urban hydrology including sewer systems, stormwater management, and green infrastructure; •Drinking water treatment and distribution; •Potable and non-potable water reuse; •Sanitation, public health, and risk assessment; •Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions; •Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment; •Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution; •Environmental restoration, linked to surface water, groundwater and groundwater remediation; •Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts; •Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle; •Socio-economic, policy, and regulations studies.
期刊最新文献
Multi-element Compound-Specific Stable Isotope Analysis (2H, 13C, 15N, 33/34S) to characterize the mechanism of sulfate and hydroxyl radical reaction and photolysis of benzothiazole Unravelling Riverine Dissolved Organic Matter Sources Using Molecular Fingerprints and FEAST Model in A Multi-tributary Mountain River Basin Modulating d-Orbital Electronic Configuration of Magnetic Iron Sulfide Nanocrystals for Maximized Treatment Efficiency of Chromium-Contaminated Water Stocking Filter-Feeder in Fed Fish Aquaculture Pond: Unexpected Aggravation of Nitrous Oxide Emission Molecular mechanisms by which polyethylene terephthalate (PET) microplastic and PET leachate promote the growth of benthic cyanobacteria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1