Explainable time-to-progression predictions in multiple sclerosis

IF 4.9 2区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer methods and programs in biomedicine Pub Date : 2025-02-06 DOI:10.1016/j.cmpb.2025.108624
Robbe D’hondt , Klest Dedja , Sofie Aerts , Bart Van Wijmeersch , Tomas Kalincik , Stephen Reddel , Eva Kubala Havrdova , Alessandra Lugaresi , Bianca Weinstock-Guttman , Saloua Mrabet , Patrice Lalive , Allan G. Kermode , Serkan Ozakbas , Francesco Patti , Alexandre Prat , Valentina Tomassini , Izanne Roos , Raed Alroughani , Oliver Gerlach , Samia J. Khoury , Celine Vens
{"title":"Explainable time-to-progression predictions in multiple sclerosis","authors":"Robbe D’hondt ,&nbsp;Klest Dedja ,&nbsp;Sofie Aerts ,&nbsp;Bart Van Wijmeersch ,&nbsp;Tomas Kalincik ,&nbsp;Stephen Reddel ,&nbsp;Eva Kubala Havrdova ,&nbsp;Alessandra Lugaresi ,&nbsp;Bianca Weinstock-Guttman ,&nbsp;Saloua Mrabet ,&nbsp;Patrice Lalive ,&nbsp;Allan G. Kermode ,&nbsp;Serkan Ozakbas ,&nbsp;Francesco Patti ,&nbsp;Alexandre Prat ,&nbsp;Valentina Tomassini ,&nbsp;Izanne Roos ,&nbsp;Raed Alroughani ,&nbsp;Oliver Gerlach ,&nbsp;Samia J. Khoury ,&nbsp;Celine Vens","doi":"10.1016/j.cmpb.2025.108624","DOIUrl":null,"url":null,"abstract":"<div><h3>Background:</h3><div>Prognostic machine learning research in multiple sclerosis has been mainly focusing on black-box models predicting whether a patients’ disability will progress in a fixed number of years. However, as this is a binary yes/no question, it cannot take individual disease severity into account. Therefore, in this work we propose to model the time to disease progression instead. Additionally, we use explainable machine learning techniques to make the model outputs more interpretable.</div></div><div><h3>Methods:</h3><div>A preprocessed subset of 29,201 patients of the international data registry MSBase was used. Disability was assessed in terms of the Expanded Disability Status Scale (EDSS). We predict the time to significant and confirmed disability progression using random survival forests, a machine learning model for survival analysis. Performance is evaluated on a time-dependent area under the receiver operating characteristic and the precision–recall curves. Importantly, predictions are then explained using SHAP and Bellatrex, two explainability toolboxes, and lead to both global (population-wide) as well as local (patient visit-specific) insights.</div></div><div><h3>Results:</h3><div>On the task of predicting progression in 2 years, the random survival forest achieves state-of-the-art performance, comparable to previous work employing a random forest. However, here the random survival forest has the added advantage of being able to predict progression over a longer time horizon, with AUROC <span><math><mrow><mo>&gt;</mo><mn>60</mn><mtext>%</mtext></mrow></math></span> for the first 10 years after baseline. Explainability techniques further validated the model by extracting clinically valid insights from the predictions made by the model. For example, a clear decline in the per-visit probability of progression is observed in more recent years since 2012, likely reflecting globally increasing use of more effective MS therapies.</div></div><div><h3>Conclusion:</h3><div>The binary classification models found in the literature can be extended to a time-to-event setting without loss of performance, thus allowing a more comprehensive prediction of patient prognosis. Furthermore, explainability techniques proved to be key to reach a better understanding of the model and increase validation of its behaviour.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"263 ","pages":"Article 108624"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260725000410","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Background:

Prognostic machine learning research in multiple sclerosis has been mainly focusing on black-box models predicting whether a patients’ disability will progress in a fixed number of years. However, as this is a binary yes/no question, it cannot take individual disease severity into account. Therefore, in this work we propose to model the time to disease progression instead. Additionally, we use explainable machine learning techniques to make the model outputs more interpretable.

Methods:

A preprocessed subset of 29,201 patients of the international data registry MSBase was used. Disability was assessed in terms of the Expanded Disability Status Scale (EDSS). We predict the time to significant and confirmed disability progression using random survival forests, a machine learning model for survival analysis. Performance is evaluated on a time-dependent area under the receiver operating characteristic and the precision–recall curves. Importantly, predictions are then explained using SHAP and Bellatrex, two explainability toolboxes, and lead to both global (population-wide) as well as local (patient visit-specific) insights.

Results:

On the task of predicting progression in 2 years, the random survival forest achieves state-of-the-art performance, comparable to previous work employing a random forest. However, here the random survival forest has the added advantage of being able to predict progression over a longer time horizon, with AUROC >60% for the first 10 years after baseline. Explainability techniques further validated the model by extracting clinically valid insights from the predictions made by the model. For example, a clear decline in the per-visit probability of progression is observed in more recent years since 2012, likely reflecting globally increasing use of more effective MS therapies.

Conclusion:

The binary classification models found in the literature can be extended to a time-to-event setting without loss of performance, thus allowing a more comprehensive prediction of patient prognosis. Furthermore, explainability techniques proved to be key to reach a better understanding of the model and increase validation of its behaviour.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer methods and programs in biomedicine
Computer methods and programs in biomedicine 工程技术-工程:生物医学
CiteScore
12.30
自引率
6.60%
发文量
601
审稿时长
135 days
期刊介绍: To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine. Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.
期刊最新文献
Editorial Board A Markov Chain methodology for care pathway mapping using health insurance data, a study case on pediatric TBI Towards clinical prediction with transparency: An explainable AI approach to survival modelling in residential aged care A novel endoscopic posterior cervical decompression and interbody fusion technique: Feasibility and biomechanical analysis Nonlinear dose-response relationship in tDCS-induced brain network synchrony: A resting-state whole-brain model analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1