{"title":"Neural crest cells are sensitive to radiation-induced DNA damage","authors":"Yasuko Honjo, Tatsuo Ichinohe","doi":"10.1016/j.tice.2025.102774","DOIUrl":null,"url":null,"abstract":"<div><div>Radiation-induced DNA damage introduces mutations that have various deleterious effects, which may lead to apoptosis and carcinogenesis. Different tissues and cell types exhibit varying degrees of sensitivity to radiation-induced DNA damage, which is often attributed to the frequency of cell division. In this study, we showed that irradiation affects early zebrafish embryos in a manner that is not explained by direct DNA damage and repair nor by the frequency of cell division. Zebrafish embryos irradiated at 2 h post fertilization showed drastic apoptosis, mainly in the head region, during organogenesis. Herein, we show that these apoptotic cells did not show aneuploidy or micronuclei, and that not all descendants of the same cells with the same DNA damage were necessarily apoptotic. Finally, we demonstrate that apoptotic cells have various origins and that neural crest cells have a sensitive cell fate. Our results suggest the existence of a radiation damage response mechanism other than those previously described, the elucidation of which may inform strategies for greater protection against radiation injury.</div></div>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"94 ","pages":"Article 102774"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040816625000540","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Radiation-induced DNA damage introduces mutations that have various deleterious effects, which may lead to apoptosis and carcinogenesis. Different tissues and cell types exhibit varying degrees of sensitivity to radiation-induced DNA damage, which is often attributed to the frequency of cell division. In this study, we showed that irradiation affects early zebrafish embryos in a manner that is not explained by direct DNA damage and repair nor by the frequency of cell division. Zebrafish embryos irradiated at 2 h post fertilization showed drastic apoptosis, mainly in the head region, during organogenesis. Herein, we show that these apoptotic cells did not show aneuploidy or micronuclei, and that not all descendants of the same cells with the same DNA damage were necessarily apoptotic. Finally, we demonstrate that apoptotic cells have various origins and that neural crest cells have a sensitive cell fate. Our results suggest the existence of a radiation damage response mechanism other than those previously described, the elucidation of which may inform strategies for greater protection against radiation injury.
期刊介绍:
Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed.
Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.