Localized iodinated poly (Vinylidene Difluoride)-based solid-state electrolyte for enhanced dendrite-free lithium metal batteries

IF 5.5 3区 工程技术 Q1 ENGINEERING, CHEMICAL Journal of the Taiwan Institute of Chemical Engineers Pub Date : 2025-02-15 DOI:10.1016/j.jtice.2025.106014
Tong Wu, Guodong Chen, Ying Zhu, Xingjie Chen, Yilin Zhu, Chunyan Lai
{"title":"Localized iodinated poly (Vinylidene Difluoride)-based solid-state electrolyte for enhanced dendrite-free lithium metal batteries","authors":"Tong Wu,&nbsp;Guodong Chen,&nbsp;Ying Zhu,&nbsp;Xingjie Chen,&nbsp;Yilin Zhu,&nbsp;Chunyan Lai","doi":"10.1016/j.jtice.2025.106014","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Addressing the challenges of solid-state batteries in the new energy sector requires a focus on interface issues. The interface between the solid electrolyte and the lithium metal anode is crucial, as it significantly influences battery performance.</div></div><div><h3>Methods</h3><div>Iodine-introduced poly (vinylidene fluoride) (PVDF) solid electrolytes are synthesized by solution casting method. The electrolyte is found to form a stable LiI-containing and LiF-rich interface with the lithium metal anode by sputtering XPS.</div></div><div><h3>Significant findings</h3><div>The acquired electrolytes show outstanding lithium-ion conductivity (7.9 × 10<sup>−4</sup> S cm<sup>−1</sup>) and migration number (0.42). The Li || Li batteries with the proposed electrolyte can cycle stably for 1000 h at a current density of 0.1 mA cm<sup>−2</sup>, the LFP || Li batteries maintain up to 97.2 % capacity retention at 0.5C after 1000 cycles, and 98.7 % capacity retention at 1C after 300 cycles. A pouch cell with the solid polymer electrolyte is able to undergo stably for &gt;200 cycles at 0.5C.</div></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"170 ","pages":"Article 106014"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876107025000677","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Addressing the challenges of solid-state batteries in the new energy sector requires a focus on interface issues. The interface between the solid electrolyte and the lithium metal anode is crucial, as it significantly influences battery performance.

Methods

Iodine-introduced poly (vinylidene fluoride) (PVDF) solid electrolytes are synthesized by solution casting method. The electrolyte is found to form a stable LiI-containing and LiF-rich interface with the lithium metal anode by sputtering XPS.

Significant findings

The acquired electrolytes show outstanding lithium-ion conductivity (7.9 × 10−4 S cm−1) and migration number (0.42). The Li || Li batteries with the proposed electrolyte can cycle stably for 1000 h at a current density of 0.1 mA cm−2, the LFP || Li batteries maintain up to 97.2 % capacity retention at 0.5C after 1000 cycles, and 98.7 % capacity retention at 1C after 300 cycles. A pouch cell with the solid polymer electrolyte is able to undergo stably for >200 cycles at 0.5C.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
14.00%
发文量
362
审稿时长
35 days
期刊介绍: Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.
期刊最新文献
Homogenous Electro-Fenton degradation of phenazopyridine in wastewater using a 3D Printed filter-press flowcell: Optimization via response surface methodology Selected pharmaceutical pollutant recovery from wastewater by an agro-byproduct Laurus nobilis-based adsorbent: Theoretical and experimental studies Recovery of phosphate and removal of Cr(VI) from water by calcium-modified panda manure biochar: Synergistic effect of adsorption and reduction Hydrochar carbon derived from pistachio shell for simultaneous electrochemical sensing of glucose and lactate in sweat Study on oil/water separation using ceramic membrane before and after its wear and repair
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1