Effect of tristetraprolin on esophageal squamous cell carcinoma cell proliferation

IF 2.7 4区 生物学 Q1 ANATOMY & MORPHOLOGY Tissue & cell Pub Date : 2025-02-07 DOI:10.1016/j.tice.2025.102785
Xiaoya Deng , Xiaoqin Luo , Zhanglan Fang , Xinyu Chen , Qinli Luo
{"title":"Effect of tristetraprolin on esophageal squamous cell carcinoma cell proliferation","authors":"Xiaoya Deng ,&nbsp;Xiaoqin Luo ,&nbsp;Zhanglan Fang ,&nbsp;Xinyu Chen ,&nbsp;Qinli Luo","doi":"10.1016/j.tice.2025.102785","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Tristetraprolin (TTP) can inhibit the abnormal proliferation of malignant tumors but there are no studies involving TTP and esophageal squamous cell carcinoma (ESCC). We aimed to determine the effect of TTP on ESCC cell proliferation and to elucidate the underlying mechanism.</div></div><div><h3>Methods</h3><div>The human ESCC cell line, KYSE-510, and the human ESCC cell line, KYSE-150, stably infected with tetracycline-inducible expression (Tet-on-TTP and Tet-on-EV, respectively) were screened with puromycin. After Tet-on-TTP KYSE-150 cells were treated with different concentrations of doxycycline [Dox] (0, 0.5, and 1 ug/mL), the levels of TTP mRNA and protein expression were detected by real-time fluorescent quantitative PCR and western blotting, respectively. The effects of TTP on proliferation and migration were estimated by CCK-8 and Transwell assays, respectively. Cell apoptosis and cell cycle were measured by flow cytometry. Cellular apoptosis-related gene protein expression was determined by western blotting.</div></div><div><h3>Results</h3><div>TTP overexpression significantly inhibited KYSE-510 and KYSE-150 proliferation. TTP overexpression also significantly inhibited KYSE-150 migration. In addition, TTP expression upregulation promoted the KYSE-150 apoptosis and induced cell cycle arrest in the G<sub>2</sub> phase, downregulated Bcl-2 expression, and upregulated Bax expression.</div></div><div><h3>Conclusion</h3><div>TTP inhibited ESCC cell proliferation, promoted ESCC cell apoptosis, and arrested cell cycle progression in the G<sub>2</sub> phase.</div></div>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"94 ","pages":"Article 102785"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040816625000655","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Tristetraprolin (TTP) can inhibit the abnormal proliferation of malignant tumors but there are no studies involving TTP and esophageal squamous cell carcinoma (ESCC). We aimed to determine the effect of TTP on ESCC cell proliferation and to elucidate the underlying mechanism.

Methods

The human ESCC cell line, KYSE-510, and the human ESCC cell line, KYSE-150, stably infected with tetracycline-inducible expression (Tet-on-TTP and Tet-on-EV, respectively) were screened with puromycin. After Tet-on-TTP KYSE-150 cells were treated with different concentrations of doxycycline [Dox] (0, 0.5, and 1 ug/mL), the levels of TTP mRNA and protein expression were detected by real-time fluorescent quantitative PCR and western blotting, respectively. The effects of TTP on proliferation and migration were estimated by CCK-8 and Transwell assays, respectively. Cell apoptosis and cell cycle were measured by flow cytometry. Cellular apoptosis-related gene protein expression was determined by western blotting.

Results

TTP overexpression significantly inhibited KYSE-510 and KYSE-150 proliferation. TTP overexpression also significantly inhibited KYSE-150 migration. In addition, TTP expression upregulation promoted the KYSE-150 apoptosis and induced cell cycle arrest in the G2 phase, downregulated Bcl-2 expression, and upregulated Bax expression.

Conclusion

TTP inhibited ESCC cell proliferation, promoted ESCC cell apoptosis, and arrested cell cycle progression in the G2 phase.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Tissue & cell
Tissue & cell 医学-解剖学与形态学
CiteScore
3.90
自引率
0.00%
发文量
234
期刊介绍: Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed. Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.
期刊最新文献
Editorial Board Investigating the enhancement of neural differentiation of adipose-derived mesenchymal stem cell with Foeniculum vulgare nanoemulsions: An in vitro research Corrigendum to "Micronized cellular adipose matrix purified with a bladed connector contains abundant functional adipose stem cells" [Tissue Cell 89 (2024) 102457]. Evaluation of Paracentrotus lividus spines extract antioxidant, antidiabetic, anti-inflammatory, antimicrobial, and mechanistic anticancer: Insights into its composition using UPLC-ESI-MS-based metabolomic profiling Targeting TLR4/NF-κB signaling, oxidative stress, and apoptosis by farnesol mitigates cadmium-induced testicular toxicity in rats
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1