Jianwen Zheng , Justin Zuopeng Zhang , Muhammad Mustafa Kamal , Sachin Kumar Mangla
{"title":"A dual evolutionary perspective on the Co-evolution of data-driven digital transformation and value proposition in manufacturing SMEs","authors":"Jianwen Zheng , Justin Zuopeng Zhang , Muhammad Mustafa Kamal , Sachin Kumar Mangla","doi":"10.1016/j.ijpe.2025.109561","DOIUrl":null,"url":null,"abstract":"<div><div>Existing research emphasizes the importance of understanding the digital transformation process, yet there remains a significant gap in capturing its dynamic stages and transitions, particularly for small and medium-sized enterprises (SMEs). To address this gap, this study draws on organizational information processing theory and analyzes interview data from six traditional manufacturing SMEs. The findings lead to the development of a data-driven digital transformation process model comprising three distinct stages: (1) data-informed operational excellence, (2) data-synchronized supply chain integration, and (3) data-catalyzed ecosystem innovation. This model also maps the evolution of firm value propositions across these stages: (1) intrinsic value mapping, (2) value chain alignment, and (3) ecosystem value co-creation. Additionally, the study identifies critical preconditions for stage transitions, including supply chain mastery to progress from Stage 1 to Stage 2 and strategic ecosystem analytics integration to advance from Stage 2 to Stage 3. By offering a structured framework for understanding data-driven digital transformation, this study makes a significant contribution to the literature, particularly within the context of traditional manufacturing SMEs.</div></div>","PeriodicalId":14287,"journal":{"name":"International Journal of Production Economics","volume":"282 ","pages":"Article 109561"},"PeriodicalIF":9.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Production Economics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925527325000465","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Existing research emphasizes the importance of understanding the digital transformation process, yet there remains a significant gap in capturing its dynamic stages and transitions, particularly for small and medium-sized enterprises (SMEs). To address this gap, this study draws on organizational information processing theory and analyzes interview data from six traditional manufacturing SMEs. The findings lead to the development of a data-driven digital transformation process model comprising three distinct stages: (1) data-informed operational excellence, (2) data-synchronized supply chain integration, and (3) data-catalyzed ecosystem innovation. This model also maps the evolution of firm value propositions across these stages: (1) intrinsic value mapping, (2) value chain alignment, and (3) ecosystem value co-creation. Additionally, the study identifies critical preconditions for stage transitions, including supply chain mastery to progress from Stage 1 to Stage 2 and strategic ecosystem analytics integration to advance from Stage 2 to Stage 3. By offering a structured framework for understanding data-driven digital transformation, this study makes a significant contribution to the literature, particularly within the context of traditional manufacturing SMEs.
期刊介绍:
The International Journal of Production Economics focuses on the interface between engineering and management. It covers all aspects of manufacturing and process industries, as well as production in general. The journal is interdisciplinary, considering activities throughout the product life cycle and material flow cycle. It aims to disseminate knowledge for improving industrial practice and strengthening the theoretical base for decision making. The journal serves as a forum for exchanging ideas and presenting new developments in theory and application, combining academic standards with practical value for industrial applications.