Serpil Yalcin Kuzu , Ayben Karasu Uysal , Mustafa Kaya
{"title":"Enhancing precision in J/ψ mass estimation: A study of ensemble and deep learning methods","authors":"Serpil Yalcin Kuzu , Ayben Karasu Uysal , Mustafa Kaya","doi":"10.1016/j.cpc.2025.109534","DOIUrl":null,"url":null,"abstract":"<div><div>This study evaluates ensemble learning methods and Deep Neural Networks (DNNs) for identifying <em>J/</em><span><math><mi>ψ</mi><mo>→</mo><msup><mrow><mi>μ</mi></mrow><mrow><mo>+</mo></mrow></msup><msup><mrow><mi>μ</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span> events in proton-proton collisions at the LHC, focusing on the dimuon decay channel within a skewed dataset. For this purpose, 8 different machine learning models based on Random Forest (RF), Gradient Boosting Decision Trees (GBDT), and DNNs were implemented to investigate the most effective approach for charmonium event determination. Performance metrics such as precision, recall, F-1 Score, geometric mean (G-mean), and balanced accuracy (BAcc) are employed, with StratifiedKFold cross-validation verifying the models' robustness in skewed data scenarios. Results demonstrate DNNs as the most proficient, underscoring their potential in complex data analysis in particle physics. Utilizing the Crystal Ball (CB) function on the results of DNNs, the precision of the <em>J/ψ</em> mass was estimated. This study not only enhances understanding of machine learning applications in high-energy particle collisions but also sets the stage for more advanced research in this field.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"310 ","pages":"Article 109534"},"PeriodicalIF":7.2000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465525000372","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This study evaluates ensemble learning methods and Deep Neural Networks (DNNs) for identifying J/ events in proton-proton collisions at the LHC, focusing on the dimuon decay channel within a skewed dataset. For this purpose, 8 different machine learning models based on Random Forest (RF), Gradient Boosting Decision Trees (GBDT), and DNNs were implemented to investigate the most effective approach for charmonium event determination. Performance metrics such as precision, recall, F-1 Score, geometric mean (G-mean), and balanced accuracy (BAcc) are employed, with StratifiedKFold cross-validation verifying the models' robustness in skewed data scenarios. Results demonstrate DNNs as the most proficient, underscoring their potential in complex data analysis in particle physics. Utilizing the Crystal Ball (CB) function on the results of DNNs, the precision of the J/ψ mass was estimated. This study not only enhances understanding of machine learning applications in high-energy particle collisions but also sets the stage for more advanced research in this field.
期刊介绍:
The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper.
Computer Programs in Physics (CPiP)
These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged.
Computational Physics Papers (CP)
These are research papers in, but are not limited to, the following themes across computational physics and related disciplines.
mathematical and numerical methods and algorithms;
computational models including those associated with the design, control and analysis of experiments; and
algebraic computation.
Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.