Evaluating soiling effects to optimize solar photovoltaic performance using machine learning algorithms

IF 7.1 Q1 ENERGY & FUELS Energy Conversion and Management-X Pub Date : 2025-02-11 DOI:10.1016/j.ecmx.2025.100921
Muhammad Faizan Tahir , Anthony Tzes , Tarek H.M. El-Fouly , Mohamed Shawky El Moursi , Nauman Ali Larik
{"title":"Evaluating soiling effects to optimize solar photovoltaic performance using machine learning algorithms","authors":"Muhammad Faizan Tahir ,&nbsp;Anthony Tzes ,&nbsp;Tarek H.M. El-Fouly ,&nbsp;Mohamed Shawky El Moursi ,&nbsp;Nauman Ali Larik","doi":"10.1016/j.ecmx.2025.100921","DOIUrl":null,"url":null,"abstract":"<div><div>Fossil fuel environmental issues and escalating costs have prompted a global shift towards renewable energy sources like solar photovoltaic. However, optimizing the performance of photovoltaic systems requires a comprehensive investigation of the various factors that reduce their power generation. Dust accumulation is prevalent in arid regions like the United Arab Emirates, posing a significant challenge to solar photovoltaic performance. Therefore, this study investigates the effect of soiling (from 1% to 5%) on electrical parameters (open circuit voltage and short circuit current), photovoltaic panel characteristics (cell temperature and module efficiency), and environmental variables (wind speed and irradiance) in the United Arab Emirates based Noor Abu Dhabi Solar Project. Additionally, machine learning algorithms such as artificial neural networks, support vector machines, regression trees, ensemble of regression trees, Gaussian process regression, efficient linear regression, and kernel methods are employed to predict power reduction due to soiling and soiling losses across various soiling percentages. Hyperparameter optimization using Bayesian methods enhances predictive performance. Results show Gaussian process regression and artificial neural networks excel in accuracy, though all models’ performance declines with increased soiling. Economic analysis via system advisor model highlights significant revenue drops in power purchase agreements with higher soiling, emphasizing need for proactive cleaning and maintenance.</div></div>","PeriodicalId":37131,"journal":{"name":"Energy Conversion and Management-X","volume":"26 ","pages":"Article 100921"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management-X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590174525000534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Fossil fuel environmental issues and escalating costs have prompted a global shift towards renewable energy sources like solar photovoltaic. However, optimizing the performance of photovoltaic systems requires a comprehensive investigation of the various factors that reduce their power generation. Dust accumulation is prevalent in arid regions like the United Arab Emirates, posing a significant challenge to solar photovoltaic performance. Therefore, this study investigates the effect of soiling (from 1% to 5%) on electrical parameters (open circuit voltage and short circuit current), photovoltaic panel characteristics (cell temperature and module efficiency), and environmental variables (wind speed and irradiance) in the United Arab Emirates based Noor Abu Dhabi Solar Project. Additionally, machine learning algorithms such as artificial neural networks, support vector machines, regression trees, ensemble of regression trees, Gaussian process regression, efficient linear regression, and kernel methods are employed to predict power reduction due to soiling and soiling losses across various soiling percentages. Hyperparameter optimization using Bayesian methods enhances predictive performance. Results show Gaussian process regression and artificial neural networks excel in accuracy, though all models’ performance declines with increased soiling. Economic analysis via system advisor model highlights significant revenue drops in power purchase agreements with higher soiling, emphasizing need for proactive cleaning and maintenance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.80
自引率
3.20%
发文量
180
审稿时长
58 days
期刊介绍: Energy Conversion and Management: X is the open access extension of the reputable journal Energy Conversion and Management, serving as a platform for interdisciplinary research on a wide array of critical energy subjects. The journal is dedicated to publishing original contributions and in-depth technical review articles that present groundbreaking research on topics spanning energy generation, utilization, conversion, storage, transmission, conservation, management, and sustainability. The scope of Energy Conversion and Management: X encompasses various forms of energy, including mechanical, thermal, nuclear, chemical, electromagnetic, magnetic, and electric energy. It addresses all known energy resources, highlighting both conventional sources like fossil fuels and nuclear power, as well as renewable resources such as solar, biomass, hydro, wind, geothermal, and ocean energy.
期刊最新文献
Advancements in photovoltaic technology: A comprehensive review of recent advances and future prospects A simple simultaneous envelope/system optimization for energy efficiency improvement in near-zero energy buildings Agricultural tractor electrical propulsion concept Comparative assessment of single axis manual solar PV trackers: A case study for agricultural applications Optimization of combined electricity generation and cooling load reduction by incorporating roof top photovoltaic module: An approach to energy consumption reduction in a hospital building
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1