MXene nanofluids in advanced applications: An in-depth review of thermophysical characteristics and technological innovations

IF 7.1 3区 材料科学 Q1 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Materials Today Sustainability Pub Date : 2025-02-05 DOI:10.1016/j.mtsust.2025.101084
Sridhar Kulandaivel , Ngui Wai Keng , Mahendran Samykano , Subbarama Kousik Suraparaju , Mohd Fairusham Ghazali , Reji Kumar Rajamony , Nurhanis Sofiah Abd Ghafar
{"title":"MXene nanofluids in advanced applications: An in-depth review of thermophysical characteristics and technological innovations","authors":"Sridhar Kulandaivel ,&nbsp;Ngui Wai Keng ,&nbsp;Mahendran Samykano ,&nbsp;Subbarama Kousik Suraparaju ,&nbsp;Mohd Fairusham Ghazali ,&nbsp;Reji Kumar Rajamony ,&nbsp;Nurhanis Sofiah Abd Ghafar","doi":"10.1016/j.mtsust.2025.101084","DOIUrl":null,"url":null,"abstract":"<div><div>Nanofluids have emerged as a promising solution to the challenge of enhancing heat transfer in modern energy applications. MXene-based nanofluids stand out due to their exceptional optical and thermophysical properties, making them highly suitable for diverse industrial applications. However, challenges such as agglomeration and stability have hindered their widespread commercial adoption despite their potential. This review provides a comprehensive overview of MXene nanofluids, focusing on their synthesis, properties, and strategies to manage accumulation and stability. The review highlights innovative approaches to mitigate agglomeration issues while enhancing thermal properties and ensuring long-term stability in heating and cooling applications. The transformative potential of MXene nanofluids extends to electronics, automotive cooling systems, renewable energy, and biomedical applications. This review underscores the importance of future research efforts to examine the stability and physical characteristics of MXene nanofluids thoroughly. By laying the groundwork for further exploration, this review serves as a valuable resource for researchers seeking to optimize MXene nanofluids for specific applications, promising improvements in heat transfer efficiency, economic feasibility, and environmental sustainability compared to conventional heat transfer fluids.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"29 ","pages":"Article 101084"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589234725000132","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Nanofluids have emerged as a promising solution to the challenge of enhancing heat transfer in modern energy applications. MXene-based nanofluids stand out due to their exceptional optical and thermophysical properties, making them highly suitable for diverse industrial applications. However, challenges such as agglomeration and stability have hindered their widespread commercial adoption despite their potential. This review provides a comprehensive overview of MXene nanofluids, focusing on their synthesis, properties, and strategies to manage accumulation and stability. The review highlights innovative approaches to mitigate agglomeration issues while enhancing thermal properties and ensuring long-term stability in heating and cooling applications. The transformative potential of MXene nanofluids extends to electronics, automotive cooling systems, renewable energy, and biomedical applications. This review underscores the importance of future research efforts to examine the stability and physical characteristics of MXene nanofluids thoroughly. By laying the groundwork for further exploration, this review serves as a valuable resource for researchers seeking to optimize MXene nanofluids for specific applications, promising improvements in heat transfer efficiency, economic feasibility, and environmental sustainability compared to conventional heat transfer fluids.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
6.40%
发文量
174
审稿时长
32 days
期刊介绍: Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science. With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.
期刊最新文献
Xanthan gum biopolymer for uniform dispersion of halloysite nanotubes to enhance micro- and macroscopic performance of cementitious composite: A sustainable alternative to chemical surfactants One-step calcination strategy of 3D printing CuO–ZnO–ZrO2 catalysts for CO2 hydrogenation using digital light processing (DLP) MXene nanofluids in advanced applications: An in-depth review of thermophysical characteristics and technological innovations Rationally designed bulky MoS2@C@MoS2 hierarchical materials as an enhanced anode for lithium-ion batteries Promotional role of methanol and CO2 in carbon dioxide-rich syngas hydrogenation over slurry reactor utilizing combustion induced Cu-based catalysts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1