Sridhar Kulandaivel , Ngui Wai Keng , Mahendran Samykano , Subbarama Kousik Suraparaju , Mohd Fairusham Ghazali , Reji Kumar Rajamony , Nurhanis Sofiah Abd Ghafar
{"title":"MXene nanofluids in advanced applications: An in-depth review of thermophysical characteristics and technological innovations","authors":"Sridhar Kulandaivel , Ngui Wai Keng , Mahendran Samykano , Subbarama Kousik Suraparaju , Mohd Fairusham Ghazali , Reji Kumar Rajamony , Nurhanis Sofiah Abd Ghafar","doi":"10.1016/j.mtsust.2025.101084","DOIUrl":null,"url":null,"abstract":"<div><div>Nanofluids have emerged as a promising solution to the challenge of enhancing heat transfer in modern energy applications. MXene-based nanofluids stand out due to their exceptional optical and thermophysical properties, making them highly suitable for diverse industrial applications. However, challenges such as agglomeration and stability have hindered their widespread commercial adoption despite their potential. This review provides a comprehensive overview of MXene nanofluids, focusing on their synthesis, properties, and strategies to manage accumulation and stability. The review highlights innovative approaches to mitigate agglomeration issues while enhancing thermal properties and ensuring long-term stability in heating and cooling applications. The transformative potential of MXene nanofluids extends to electronics, automotive cooling systems, renewable energy, and biomedical applications. This review underscores the importance of future research efforts to examine the stability and physical characteristics of MXene nanofluids thoroughly. By laying the groundwork for further exploration, this review serves as a valuable resource for researchers seeking to optimize MXene nanofluids for specific applications, promising improvements in heat transfer efficiency, economic feasibility, and environmental sustainability compared to conventional heat transfer fluids.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"29 ","pages":"Article 101084"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589234725000132","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanofluids have emerged as a promising solution to the challenge of enhancing heat transfer in modern energy applications. MXene-based nanofluids stand out due to their exceptional optical and thermophysical properties, making them highly suitable for diverse industrial applications. However, challenges such as agglomeration and stability have hindered their widespread commercial adoption despite their potential. This review provides a comprehensive overview of MXene nanofluids, focusing on their synthesis, properties, and strategies to manage accumulation and stability. The review highlights innovative approaches to mitigate agglomeration issues while enhancing thermal properties and ensuring long-term stability in heating and cooling applications. The transformative potential of MXene nanofluids extends to electronics, automotive cooling systems, renewable energy, and biomedical applications. This review underscores the importance of future research efforts to examine the stability and physical characteristics of MXene nanofluids thoroughly. By laying the groundwork for further exploration, this review serves as a valuable resource for researchers seeking to optimize MXene nanofluids for specific applications, promising improvements in heat transfer efficiency, economic feasibility, and environmental sustainability compared to conventional heat transfer fluids.
期刊介绍:
Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science.
With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.