{"title":"3D printed soft composites with tunable hyperelastic properties","authors":"Kimberlee Hughes, B. Arda Gozen","doi":"10.1016/j.compositesb.2025.112248","DOIUrl":null,"url":null,"abstract":"<div><div>The ability to precisely control spatially varying mechanical properties of soft materials is an emerging need towards the development of functionally graded biomimetic compliant structures. Multi-material additive manufacturing has proven to be an effective method to achieve this goal, however commonly used methods are expensive and limited in material capabilities. This work presents novel soft composites, consisting of a silicone matrix and thermoplastic elastomer reinforcements, fabricated through low-cost extrusion-based additive manufacturing. A customized 3D printer with direct ink write (DIW) and fused filament fabrication (FFF) capabilities is used to print composites with a sinusoidal reinforcement pattern. This parametric pattern allowed us to quantitatively analyze how the frequency and amplitude parameters influenced the hyperelastic behavior of the composites. Spatially varying hyperelastic property control capability is then demonstrated through spatial variation of reinforcement geometry. Information from these samples is used to develop a method of efficiently modeling the design-property relationships of these composites allowing us to predict hyperelastic behavior based on given design parameters. Finally, the capability of this approach to realize as-designed property variations is evaluated. The presented multi-material composites exhibit a broad range of spatially controllable stiffness and strain hardening behavior, owing to their compliant reinforcements with complex design and their unconventional interfacial nature. This approach opens up possibilities to create soft structures to be used in various applications including soft wearables, flexible electronics and tissue phantoms.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"296 ","pages":"Article 112248"},"PeriodicalIF":12.7000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825001386","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The ability to precisely control spatially varying mechanical properties of soft materials is an emerging need towards the development of functionally graded biomimetic compliant structures. Multi-material additive manufacturing has proven to be an effective method to achieve this goal, however commonly used methods are expensive and limited in material capabilities. This work presents novel soft composites, consisting of a silicone matrix and thermoplastic elastomer reinforcements, fabricated through low-cost extrusion-based additive manufacturing. A customized 3D printer with direct ink write (DIW) and fused filament fabrication (FFF) capabilities is used to print composites with a sinusoidal reinforcement pattern. This parametric pattern allowed us to quantitatively analyze how the frequency and amplitude parameters influenced the hyperelastic behavior of the composites. Spatially varying hyperelastic property control capability is then demonstrated through spatial variation of reinforcement geometry. Information from these samples is used to develop a method of efficiently modeling the design-property relationships of these composites allowing us to predict hyperelastic behavior based on given design parameters. Finally, the capability of this approach to realize as-designed property variations is evaluated. The presented multi-material composites exhibit a broad range of spatially controllable stiffness and strain hardening behavior, owing to their compliant reinforcements with complex design and their unconventional interfacial nature. This approach opens up possibilities to create soft structures to be used in various applications including soft wearables, flexible electronics and tissue phantoms.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.