Yajuan Wang , Yuxin Chen , Wenshuo Wang , Xiaofan Zheng , Shiping Chen , Shengzhang Wang , Fujun Wang , Lu Wang , Yongtai Hou , Chaojing Li
{"title":"Mechanical bionic compression resistant fiber/hydrogel composite artificial heart valve suitable for transcatheter surgery","authors":"Yajuan Wang , Yuxin Chen , Wenshuo Wang , Xiaofan Zheng , Shiping Chen , Shengzhang Wang , Fujun Wang , Lu Wang , Yongtai Hou , Chaojing Li","doi":"10.1016/j.compositesb.2025.112234","DOIUrl":null,"url":null,"abstract":"<div><div>The heart valve is a key structure for human blood circulation, and the development of artificial heart valves (AHVs) has become one of the research hotspots in the field of cardiovascular diseases. Compared to the vulnerability of biological valves to compression damage in transcatheter aortic valve replacement surgery (TAVR), polymer valves have shown superior performance in research. However, its structural differences from natural valves have limited its development. In this study, polycaprolactone gelatin (PCL-Gel) co-spinning directional nanofibers (FIB) were used to construct a three-layer structure of orientation layer-random layer-orientation layer imitating natural valves. Then, PCL-Gel/PAAm-co-PAA-Fe composite (COM-Fe) was prepared by iron ion crosslinking the oriented fiber membrane wrapped by polyacrylamide polyacrylic acid copolymer hydrogel (COM). The COM-Fe material has anisotropy similar to that of native valves and fully meets the thickness requirements for transcatheter surgery. In vitro simulated compression results showed that the COM-Fe material has no significant structural or strength loss after short-term curling compression. In vitro fluid dynamics results showed that the COM-Fe samples could fully achieve the parameters specified in ISO 5840–3:2021. In addition, COM-Fe materials showed excellent biocompatibility both in vitro and in vivo, and demonstrated anti-inflammation potential in a rat subcutaneous embedding model. It can be seen that biomimetic COM-Fe composite materials with good curling compression resistance and valve function have great potential for application in the direction of transcatheter AHVs.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"296 ","pages":"Article 112234"},"PeriodicalIF":12.7000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825001246","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The heart valve is a key structure for human blood circulation, and the development of artificial heart valves (AHVs) has become one of the research hotspots in the field of cardiovascular diseases. Compared to the vulnerability of biological valves to compression damage in transcatheter aortic valve replacement surgery (TAVR), polymer valves have shown superior performance in research. However, its structural differences from natural valves have limited its development. In this study, polycaprolactone gelatin (PCL-Gel) co-spinning directional nanofibers (FIB) were used to construct a three-layer structure of orientation layer-random layer-orientation layer imitating natural valves. Then, PCL-Gel/PAAm-co-PAA-Fe composite (COM-Fe) was prepared by iron ion crosslinking the oriented fiber membrane wrapped by polyacrylamide polyacrylic acid copolymer hydrogel (COM). The COM-Fe material has anisotropy similar to that of native valves and fully meets the thickness requirements for transcatheter surgery. In vitro simulated compression results showed that the COM-Fe material has no significant structural or strength loss after short-term curling compression. In vitro fluid dynamics results showed that the COM-Fe samples could fully achieve the parameters specified in ISO 5840–3:2021. In addition, COM-Fe materials showed excellent biocompatibility both in vitro and in vivo, and demonstrated anti-inflammation potential in a rat subcutaneous embedding model. It can be seen that biomimetic COM-Fe composite materials with good curling compression resistance and valve function have great potential for application in the direction of transcatheter AHVs.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.