Miaomiao Liu , Minglong Li , Hailing Du , Donghao Xu , Jing Wang , Qingfa Ren , Rui Wang , He Gong , Yuwei Liu , Kai Qi , Jin Tao , Shuyuan Xia , Hongcai Wang , Xianglin Li , Quanyuan Liu
{"title":"The alteration of glutamate involved in the brain of Parkinson's disease patients using glutamate chemical exchange saturation transfer (GluCEST)","authors":"Miaomiao Liu , Minglong Li , Hailing Du , Donghao Xu , Jing Wang , Qingfa Ren , Rui Wang , He Gong , Yuwei Liu , Kai Qi , Jin Tao , Shuyuan Xia , Hongcai Wang , Xianglin Li , Quanyuan Liu","doi":"10.1016/j.bbr.2025.115484","DOIUrl":null,"url":null,"abstract":"<div><div>Increased levels of glutamate, a novel regulator of neuroinflammation, is involved in the pathogenesis of Parkinson's disease (PD). Although glutamate chemical exchange saturation transfer (GluCEST) is widely used in central nervous system (CNS) disorders, it has been less commonly used in clinical practice for PD. Here, to explore the clinical significance of variations in glutamate levels in the striatum and thalamus in PD, we included forty-nine PD patients and forty-four healthy controls (HCs). Glutamate levels were analyzed by performing magnetization transfer ratio asymmetry (MTRasym) using GluCEST data. Four regions of interest (ROIs) were manually outlined on GluCEST images, and MTRasym values were calculated for each. FreeSurfer was used to calculate the volumes. We found that MTRasym values in the striatum and thalamus were elevated in PD. Variations in MTRasym values were correlated with motor scores. It has been found that the volume of the left pallidal nucleus were reduced in PD. The glutamate levels in the striatum and thalamus were significantly different from those in HCs and associated with disease progression. Collectively, glutamate metabolic abnormalities may be present in PD pathophysiology and associated with disease progression. GluCEST imaging may have potential to become an imaging technology for measuring glutamate alterations in the striatum and thalamus in PD.</div></div>","PeriodicalId":8823,"journal":{"name":"Behavioural Brain Research","volume":"483 ","pages":"Article 115484"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Brain Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166432825000701","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Increased levels of glutamate, a novel regulator of neuroinflammation, is involved in the pathogenesis of Parkinson's disease (PD). Although glutamate chemical exchange saturation transfer (GluCEST) is widely used in central nervous system (CNS) disorders, it has been less commonly used in clinical practice for PD. Here, to explore the clinical significance of variations in glutamate levels in the striatum and thalamus in PD, we included forty-nine PD patients and forty-four healthy controls (HCs). Glutamate levels were analyzed by performing magnetization transfer ratio asymmetry (MTRasym) using GluCEST data. Four regions of interest (ROIs) were manually outlined on GluCEST images, and MTRasym values were calculated for each. FreeSurfer was used to calculate the volumes. We found that MTRasym values in the striatum and thalamus were elevated in PD. Variations in MTRasym values were correlated with motor scores. It has been found that the volume of the left pallidal nucleus were reduced in PD. The glutamate levels in the striatum and thalamus were significantly different from those in HCs and associated with disease progression. Collectively, glutamate metabolic abnormalities may be present in PD pathophysiology and associated with disease progression. GluCEST imaging may have potential to become an imaging technology for measuring glutamate alterations in the striatum and thalamus in PD.
期刊介绍:
Behavioural Brain Research is an international, interdisciplinary journal dedicated to the publication of articles in the field of behavioural neuroscience, broadly defined. Contributions from the entire range of disciplines that comprise the neurosciences, behavioural sciences or cognitive sciences are appropriate, as long as the goal is to delineate the neural mechanisms underlying behaviour. Thus, studies may range from neurophysiological, neuroanatomical, neurochemical or neuropharmacological analysis of brain-behaviour relations, including the use of molecular genetic or behavioural genetic approaches, to studies that involve the use of brain imaging techniques, to neuroethological studies. Reports of original research, of major methodological advances, or of novel conceptual approaches are all encouraged. The journal will also consider critical reviews on selected topics.