Giovanna Abreu Alves , Roberto Tavares , Pedro Amorim , Victor Claudio Bento Camargo
{"title":"A systematic review of mathematical programming models and solution approaches for the textile supply chain","authors":"Giovanna Abreu Alves , Roberto Tavares , Pedro Amorim , Victor Claudio Bento Camargo","doi":"10.1016/j.cie.2025.110937","DOIUrl":null,"url":null,"abstract":"<div><div>The textile industry is a complex and dynamic system where structured decision-making processes are essential for efficient supply chain management. In this context, mathematical programming models offer a powerful tool for modeling and optimizing the textile supply chain. This systematic review explores the application of mathematical programming models, including linear programming, nonlinear programming, stochastic programming, robust optimization, fuzzy programming, and multi-objective programming, in optimizing the textile supply chain. The review categorizes and analyzes 163 studies across the textile manufacturing stages, from fiber production to integrated supply chains. Key results reveal the utility of these models in solving a wide range of decision-making problems, such as blending fibers, production planning, scheduling orders, cutting patterns, transportation optimization, network design, and supplier selection, considering the challenges found in the textile sector. Analyzing those models, we point out that sustainability considerations, such as environmental and social aspects, remain underexplored and present significant opportunities for future research. In addition, this study emphasizes the importance of incorporating multi-objective approaches and addressing uncertainties in decision-making to advance sustainable and efficient textile supply chain management.</div></div>","PeriodicalId":55220,"journal":{"name":"Computers & Industrial Engineering","volume":"202 ","pages":"Article 110937"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Industrial Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S036083522500083X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The textile industry is a complex and dynamic system where structured decision-making processes are essential for efficient supply chain management. In this context, mathematical programming models offer a powerful tool for modeling and optimizing the textile supply chain. This systematic review explores the application of mathematical programming models, including linear programming, nonlinear programming, stochastic programming, robust optimization, fuzzy programming, and multi-objective programming, in optimizing the textile supply chain. The review categorizes and analyzes 163 studies across the textile manufacturing stages, from fiber production to integrated supply chains. Key results reveal the utility of these models in solving a wide range of decision-making problems, such as blending fibers, production planning, scheduling orders, cutting patterns, transportation optimization, network design, and supplier selection, considering the challenges found in the textile sector. Analyzing those models, we point out that sustainability considerations, such as environmental and social aspects, remain underexplored and present significant opportunities for future research. In addition, this study emphasizes the importance of incorporating multi-objective approaches and addressing uncertainties in decision-making to advance sustainable and efficient textile supply chain management.
期刊介绍:
Computers & Industrial Engineering (CAIE) is dedicated to researchers, educators, and practitioners in industrial engineering and related fields. Pioneering the integration of computers in research, education, and practice, industrial engineering has evolved to make computers and electronic communication integral to its domain. CAIE publishes original contributions focusing on the development of novel computerized methodologies to address industrial engineering problems. It also highlights the applications of these methodologies to issues within the broader industrial engineering and associated communities. The journal actively encourages submissions that push the boundaries of fundamental theories and concepts in industrial engineering techniques.