Interaction between corner and bulk flows during drainage in granular porous media

IF 4 2区 环境科学与生态学 Q1 WATER RESOURCES Advances in Water Resources Pub Date : 2025-02-13 DOI:10.1016/j.advwatres.2025.104914
Paula Reis , Gaute Linga , Marcel Moura , Per Arne Rikvold , Renaud Toussaint , Eirik Grude Flekkøy , Knut Jørgen Måløy
{"title":"Interaction between corner and bulk flows during drainage in granular porous media","authors":"Paula Reis ,&nbsp;Gaute Linga ,&nbsp;Marcel Moura ,&nbsp;Per Arne Rikvold ,&nbsp;Renaud Toussaint ,&nbsp;Eirik Grude Flekkøy ,&nbsp;Knut Jørgen Måløy","doi":"10.1016/j.advwatres.2025.104914","DOIUrl":null,"url":null,"abstract":"<div><div>Drainage of a liquid by a gas in porous media can be broken down into two main mechanisms: a primary piston-like displacement of the interfaces through the bulk of pore bodies and throats, and a secondary slow flow through corners and films in the wake of the invasion front. In granular porous media, this secondary drainage mechanism unfolds in connected pathways of pendular structures, such as capillary bridges and liquid rings, formed between liquid clusters. To represent both mechanisms, we proposed a dynamic dual-network model for drainage, considering that a gas displaces a wetting liquid from quasi-2D granular porous media. For this model, dedicated analyses of the capillary bridge shapes and hydraulic conductivity were conducted so that the secondary drainage mechanism could be properly quantified at finite speeds. With the model, an investigation of the wetting-phase connectivity and flow during drainage was carried out, covering a broad range of flow conditions. Results indicate that the span of liquid-connected structures in the unsaturated region, as well as their ability to contribute to flow, varies significantly with Capillary and Bond numbers.</div></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"198 ","pages":"Article 104914"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Water Resources","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0309170825000284","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Drainage of a liquid by a gas in porous media can be broken down into two main mechanisms: a primary piston-like displacement of the interfaces through the bulk of pore bodies and throats, and a secondary slow flow through corners and films in the wake of the invasion front. In granular porous media, this secondary drainage mechanism unfolds in connected pathways of pendular structures, such as capillary bridges and liquid rings, formed between liquid clusters. To represent both mechanisms, we proposed a dynamic dual-network model for drainage, considering that a gas displaces a wetting liquid from quasi-2D granular porous media. For this model, dedicated analyses of the capillary bridge shapes and hydraulic conductivity were conducted so that the secondary drainage mechanism could be properly quantified at finite speeds. With the model, an investigation of the wetting-phase connectivity and flow during drainage was carried out, covering a broad range of flow conditions. Results indicate that the span of liquid-connected structures in the unsaturated region, as well as their ability to contribute to flow, varies significantly with Capillary and Bond numbers.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Water Resources
Advances in Water Resources 环境科学-水资源
CiteScore
9.40
自引率
6.40%
发文量
171
审稿时长
36 days
期刊介绍: Advances in Water Resources provides a forum for the presentation of fundamental scientific advances in the understanding of water resources systems. The scope of Advances in Water Resources includes any combination of theoretical, computational, and experimental approaches used to advance fundamental understanding of surface or subsurface water resources systems or the interaction of these systems with the atmosphere, geosphere, biosphere, and human societies. Manuscripts involving case studies that do not attempt to reach broader conclusions, research on engineering design, applied hydraulics, or water quality and treatment, as well as applications of existing knowledge that do not advance fundamental understanding of hydrological processes, are not appropriate for Advances in Water Resources. Examples of appropriate topical areas that will be considered include the following: • Surface and subsurface hydrology • Hydrometeorology • Environmental fluid dynamics • Ecohydrology and ecohydrodynamics • Multiphase transport phenomena in porous media • Fluid flow and species transport and reaction processes
期刊最新文献
A free energy based model for water transfer in amphiphilic soils Interaction between corner and bulk flows during drainage in granular porous media Mapping dissolved carbon in space and time: An experimental technique for the measurement of pH and total carbon concentration in density driven convection of CO2 dissolved in water The role of injection method on residual trapping: Insights into bridging scales and heterogeneity Solving the discretised shallow water equations using neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1