A moving Kriging meshfree vibration analysis of functionally graded porous magneto-electro-elastic plates reinforced with graphene platelets

IF 4 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Advances in Engineering Software Pub Date : 2025-02-15 DOI:10.1016/j.advengsoft.2025.103885
P.T. Hung , Chien H. Thai , P. Phung-Van
{"title":"A moving Kriging meshfree vibration analysis of functionally graded porous magneto-electro-elastic plates reinforced with graphene platelets","authors":"P.T. Hung ,&nbsp;Chien H. Thai ,&nbsp;P. Phung-Van","doi":"10.1016/j.advengsoft.2025.103885","DOIUrl":null,"url":null,"abstract":"<div><div>This article introduces a moving Kriging (MK) meshfree approach for studying the free vibration analysis of functionally graded porous magneto-electro-elastic plates with graphene platelet reinforcement (FGP-MEE-GPL). Functionally graded porous (FGP) plates are valued for their customizable material properties, while graphene platelets (GPLs) improve their mechanical performance. The pores are distributed in three patterns: uniform, symmetric I, and symmetric II. Similarly, GPLs are also arranged in three distribution patterns across the plate thickness. The structural characteristics of open-cell metal foam are used to establish the correlation between Young's modulus and mass density, providing a more accurate representation of the material's properties. The governing equations for the FGP-MEE-GPL plate are derived using the principle of virtual work and the higher-order shear deformation theory. The MK meshfree method is suggested for approximating the displacement, electric, and magnetic fields. The MK meshfree method offers an efficient solution for analyzing the vibration of the FGP-MEE-GPL plate, seamlessly addressing complex geometries and multi-field coupling without the necessity of mesh generation. The proposed model is validated by comparing its results with the reference's solutions. Parametric studies explore the influence of the porous coefficient, porous and GPLs distributions, initial external load magnetic and electric loads, and geometry on the FGP-MEE-GPL plate's vibrational frequency.</div></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"203 ","pages":"Article 103885"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Software","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965997825000237","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This article introduces a moving Kriging (MK) meshfree approach for studying the free vibration analysis of functionally graded porous magneto-electro-elastic plates with graphene platelet reinforcement (FGP-MEE-GPL). Functionally graded porous (FGP) plates are valued for their customizable material properties, while graphene platelets (GPLs) improve their mechanical performance. The pores are distributed in three patterns: uniform, symmetric I, and symmetric II. Similarly, GPLs are also arranged in three distribution patterns across the plate thickness. The structural characteristics of open-cell metal foam are used to establish the correlation between Young's modulus and mass density, providing a more accurate representation of the material's properties. The governing equations for the FGP-MEE-GPL plate are derived using the principle of virtual work and the higher-order shear deformation theory. The MK meshfree method is suggested for approximating the displacement, electric, and magnetic fields. The MK meshfree method offers an efficient solution for analyzing the vibration of the FGP-MEE-GPL plate, seamlessly addressing complex geometries and multi-field coupling without the necessity of mesh generation. The proposed model is validated by comparing its results with the reference's solutions. Parametric studies explore the influence of the porous coefficient, porous and GPLs distributions, initial external load magnetic and electric loads, and geometry on the FGP-MEE-GPL plate's vibrational frequency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Engineering Software
Advances in Engineering Software 工程技术-计算机:跨学科应用
CiteScore
7.70
自引率
4.20%
发文量
169
审稿时长
37 days
期刊介绍: The objective of this journal is to communicate recent and projected advances in computer-based engineering techniques. The fields covered include mechanical, aerospace, civil and environmental engineering, with an emphasis on research and development leading to practical problem-solving. The scope of the journal includes: • Innovative computational strategies and numerical algorithms for large-scale engineering problems • Analysis and simulation techniques and systems • Model and mesh generation • Control of the accuracy, stability and efficiency of computational process • Exploitation of new computing environments (eg distributed hetergeneous and collaborative computing) • Advanced visualization techniques, virtual environments and prototyping • Applications of AI, knowledge-based systems, computational intelligence, including fuzzy logic, neural networks and evolutionary computations • Application of object-oriented technology to engineering problems • Intelligent human computer interfaces • Design automation, multidisciplinary design and optimization • CAD, CAE and integrated process and product development systems • Quality and reliability.
期刊最新文献
Editorial Board Mirage search optimization: Application to path planning and engineering design problems Cervical spine injuries during car collisions with three types of roadside barriers Topology optimization method of strut-and-tie composite structure under uncertain load conditions A moving Kriging meshfree vibration analysis of functionally graded porous magneto-electro-elastic plates reinforced with graphene platelets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1