Yu Wang , Shangjing Peng , Hong Wang , Mingquan Zhang , Hongrui Cao , Liwei Ma
{"title":"Remaining useful life prediction based on graph feature attention networks with missing multi-sensor features","authors":"Yu Wang , Shangjing Peng , Hong Wang , Mingquan Zhang , Hongrui Cao , Liwei Ma","doi":"10.1016/j.ress.2025.110902","DOIUrl":null,"url":null,"abstract":"<div><div>Prognostics and health management (PHM) is important to ensure the reliable operation of industrial equipment, where monitoring the degradation process of machinery through multi-source sensors for remaining useful life (RUL) prediction is one of the key tasks. In recent years, deep learning-based time series forecasting methods have been proposed to predict RUL as they have strong capability on temporal correlation modeling for time series gathered by sensors. However, these methods usually operate under the assumption of a static, fixed-dimensional feature set. The proliferation of sensors inevitably escalates the probability of missing and anomalous features within measurement data, thereby causing the dimensions of input features to dynamically fluctuate over time. Therefore, this paper proposes a Graph Feature-Gated Graph Attention Network (GF-GGAT), which is capable of fusing multi-sensor data with partially missing sensor data and performing RUL prediction. First, the problem of spatio-temporal map construction when some sensor data are missing is solved by introducing dynamic time regularization. Second, the feature-deficient multi-sensor data are inductively learned through graph feature transformation and stepwise graph convolution. Finally, spatio-temporal features are extracted by a gated graph attention network (GGAT) to accomplish RUL prediction. Two case studies demonstrate the superiority of the proposed method over state-of-the-art RUL prediction methods.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"258 ","pages":"Article 110902"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095183202500105X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Prognostics and health management (PHM) is important to ensure the reliable operation of industrial equipment, where monitoring the degradation process of machinery through multi-source sensors for remaining useful life (RUL) prediction is one of the key tasks. In recent years, deep learning-based time series forecasting methods have been proposed to predict RUL as they have strong capability on temporal correlation modeling for time series gathered by sensors. However, these methods usually operate under the assumption of a static, fixed-dimensional feature set. The proliferation of sensors inevitably escalates the probability of missing and anomalous features within measurement data, thereby causing the dimensions of input features to dynamically fluctuate over time. Therefore, this paper proposes a Graph Feature-Gated Graph Attention Network (GF-GGAT), which is capable of fusing multi-sensor data with partially missing sensor data and performing RUL prediction. First, the problem of spatio-temporal map construction when some sensor data are missing is solved by introducing dynamic time regularization. Second, the feature-deficient multi-sensor data are inductively learned through graph feature transformation and stepwise graph convolution. Finally, spatio-temporal features are extracted by a gated graph attention network (GGAT) to accomplish RUL prediction. Two case studies demonstrate the superiority of the proposed method over state-of-the-art RUL prediction methods.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.