Zhichao Hu , Xue Zhou , Wei Zhang , Bingqiu Liu , Qinghe Han , Jilai Sun , Lu Li , Lingyu Zhang , Chungang Wang
{"title":"High-entropy oxide nanozyme for T1/T2 dual-mode magnetic resonance imaging guided photothermal-nanocatalytic tumor therapy","authors":"Zhichao Hu , Xue Zhou , Wei Zhang , Bingqiu Liu , Qinghe Han , Jilai Sun , Lu Li , Lingyu Zhang , Chungang Wang","doi":"10.1016/j.jcis.2025.02.046","DOIUrl":null,"url":null,"abstract":"<div><div>High-entropy oxides (HEOs) have attracted significant attention owing to their broad compositional tunability and high catalytic activity. However, research in this area is still in its early stages, and it is necessary to develop uniform multifunctional high-entropy nanozymes with appropriate sizes and excellent catalytic properties. In this study, we synthesized spherical high-entropy oxide composite carbon (HEO/C) nanoparticles (NPs) with a uniform distribution of particle size. The HEO/C NPs showed efficient peroxidase and catalase activities and photothermal conversion properties in the near-infrared (NIR) biological window. Compared to conventional Fe<sub>3</sub>O<sub>4</sub>/C NPs, HEO/C NPs exhibited superior NIR-enhanced enzyme-like activities in catalytic applications. Notably, we report, for the first time, that these HEO/C NPs exhibit T<sub>1</sub>/T<sub>2</sub> dual-mode magnetic resonance imaging (MRI) capabilities, outperforming the single-mode T<sub>2</sub> MRI performance of Fe<sub>3</sub>O<sub>4</sub>/C NPs. The combination of enzyme-like catalytic and photothermal properties, along with advanced MRI functionality, underscores the significant potential of HEO/C nanozymes for MRI-guided multimodal tumor therapy. This study opens new avenues for the application of high-entropy nanozymes in biomedicine.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"687 ","pages":"Pages 325-334"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725003972","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
High-entropy oxides (HEOs) have attracted significant attention owing to their broad compositional tunability and high catalytic activity. However, research in this area is still in its early stages, and it is necessary to develop uniform multifunctional high-entropy nanozymes with appropriate sizes and excellent catalytic properties. In this study, we synthesized spherical high-entropy oxide composite carbon (HEO/C) nanoparticles (NPs) with a uniform distribution of particle size. The HEO/C NPs showed efficient peroxidase and catalase activities and photothermal conversion properties in the near-infrared (NIR) biological window. Compared to conventional Fe3O4/C NPs, HEO/C NPs exhibited superior NIR-enhanced enzyme-like activities in catalytic applications. Notably, we report, for the first time, that these HEO/C NPs exhibit T1/T2 dual-mode magnetic resonance imaging (MRI) capabilities, outperforming the single-mode T2 MRI performance of Fe3O4/C NPs. The combination of enzyme-like catalytic and photothermal properties, along with advanced MRI functionality, underscores the significant potential of HEO/C nanozymes for MRI-guided multimodal tumor therapy. This study opens new avenues for the application of high-entropy nanozymes in biomedicine.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies