Facile green synthesis of MoO2/BiOCl nanocomposite using Hibiscus rosa-sinensis leaf extract and its application in visible-light-driven oxidative transformations
{"title":"Facile green synthesis of MoO2/BiOCl nanocomposite using Hibiscus rosa-sinensis leaf extract and its application in visible-light-driven oxidative transformations","authors":"Jayalakshmi M, Aatika Nizam","doi":"10.1016/j.jorganchem.2025.123566","DOIUrl":null,"url":null,"abstract":"<div><div>This article describes a green approach for synthesizing MoO<sub>2</sub>/BiOCl nanocomposite using a combustion procedure with <em>Hibiscus rosa-sinensis</em> leaf extract as a renewable fuel source, which also acts as a reducing and stabilizing agent. The synthesized material is characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and Fourier-transform infrared spectroscopy (FTIR), confirming the successful formation of the nanocomposite. The photocatalytic performance of MoO<sub>2</sub>/BiOCl nanocomposite was evaluated for visible-light-driven oxidative transformations of different aromatic amines to nitroarenes. The unique structure of MoO₂/BiOCl provides better accessibility to the reactant molecules, facilitating faster and more efficient oxidation. The advantages of this oxidative process are high catalytic efficiency, mild reaction conditions, recyclability, environmental sustainability, and producing nitroarenes in good to exceptional yields (67–95 %). The conversion of the compounds was validated using gas chromatography-mass spectrometry (GC–MS), <sup>1</sup>H NMR, and <sup>13</sup>C NMR. The results demonstrated that the MoO<sub>2</sub>/BiOCl nanocomposite exhibited enhanced photocatalytic activity compared to its components, attributed to the synergistic effects between MoO<sub>2</sub> and BiOCl. The use of <em>Hibiscus rosa-sinensis</em> leaf extract in the synthesis is not only environmentally friendly and cost-effective but also contributes to the stability and efficiency of the nanocomposite.</div></div>","PeriodicalId":374,"journal":{"name":"Journal of Organometallic Chemistry","volume":"1029 ","pages":"Article 123566"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organometallic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022328X25000609","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
This article describes a green approach for synthesizing MoO2/BiOCl nanocomposite using a combustion procedure with Hibiscus rosa-sinensis leaf extract as a renewable fuel source, which also acts as a reducing and stabilizing agent. The synthesized material is characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and Fourier-transform infrared spectroscopy (FTIR), confirming the successful formation of the nanocomposite. The photocatalytic performance of MoO2/BiOCl nanocomposite was evaluated for visible-light-driven oxidative transformations of different aromatic amines to nitroarenes. The unique structure of MoO₂/BiOCl provides better accessibility to the reactant molecules, facilitating faster and more efficient oxidation. The advantages of this oxidative process are high catalytic efficiency, mild reaction conditions, recyclability, environmental sustainability, and producing nitroarenes in good to exceptional yields (67–95 %). The conversion of the compounds was validated using gas chromatography-mass spectrometry (GC–MS), 1H NMR, and 13C NMR. The results demonstrated that the MoO2/BiOCl nanocomposite exhibited enhanced photocatalytic activity compared to its components, attributed to the synergistic effects between MoO2 and BiOCl. The use of Hibiscus rosa-sinensis leaf extract in the synthesis is not only environmentally friendly and cost-effective but also contributes to the stability and efficiency of the nanocomposite.
期刊介绍:
The Journal of Organometallic Chemistry targets original papers dealing with theoretical aspects, structural chemistry, synthesis, physical and chemical properties (including reaction mechanisms), and practical applications of organometallic compounds.
Organometallic compounds are defined as compounds that contain metal - carbon bonds. The term metal includes all alkali and alkaline earth metals, all transition metals and the lanthanides and actinides in the Periodic Table. Metalloids including the elements in Group 13 and the heavier members of the Groups 14 - 16 are also included. The term chemistry includes syntheses, characterizations and reaction chemistry of all such compounds. Research reports based on use of organometallic complexes in bioorganometallic chemistry, medicine, material sciences, homogeneous catalysis and energy conversion are also welcome.
The scope of the journal has been enlarged to encompass important research on organometallic complexes in bioorganometallic chemistry and material sciences, and of heavier main group elements in organometallic chemistry. The journal also publishes review articles, short communications and notes.